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Two dimensional transition metal dichalcogenides provide a host of unique op-
toelectronic properties, attributed to their two dimensional nature and unique band
structure, making them promising for future optoelectronics device applications. In
the work presented in this thesis, we focus on the theoretical understanding and mod-
elling of the optoelectronic properties of monolayer transition metal dichalcogenides,
their heterostructures and multilayers.

We studied the relaxation rates of photo-excited carriers leading to the formation of
electron-hole pairs and their subsequent radiative recombination, resulting in emission
of light. We find sub-ps relaxation times, attributed to the strong coupling of carriers
with optical phonons, allowing the efficient formation of strongly bound multi-particle
complexes such as excitons, trions and biexcitons, which can recombine radiatively if
allowed by selection rules. We classify the various complexes according to their optical
activity, and predict using diffusion quantum Monte Carlo calculations the resulting
photoluminescence spectra in these materials.

We proposed a novel, material specific, Auger process in WS2 and WSe2 involv-
ing dark excitons, which dominates over radiative processes for relatively low car-
rier densities, providing an explanation to the observed low quantum efficiencies in
these materials. In the same pair of materials, we have shown how the ground state
dark trions and biexcitons can become bright and recombine radiatively through an
electron-electron intervalley scattering process, resulting in new observable lines in the
photoluminescence spectra of these materials.

The ability to form van der Waals heterostructures of two or more layers of these
materials, allows for new degrees of freedom to be explored and utilised. The het-
erobilayer system made of MoSe2/WSe2 has a type-II band alignment, allowing for
the formation of interlayer bound complexes with carriers localized on opposite layers.
We studied the bound complexes formed in this bilayer system, localized on donor
impurities. We used quantum Monte Carlo methods to obtain binding energies and
wave functions, and calculated the radiative rates and doping dependent photolumines-
cence spectra of these complexes for closely aligned layers, and asymptotic behaviour
for strongly misaligned layers.

Finally, we studied few-layers of 2H-stacked transition metal dichalcogenides. The
van der Waals quantum well structure results in the splitting of the conduction and
valence bands into multiple subbands with energy spacings covering densely the in-
frared to far-infrared spectral range. We developed a hybrid k · p–tight binding model
parameterised by DFT calculations of monolayer and bulk crystals of the studied ma-
terials. We used the model to describe the subband dispersions, transition energies,
phonon induced broadening and resulting absorption lineshapes for both p-doped and
n-doped few-layer films.
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Chapter 1

Introduction

Since the discovery of graphene in 2004, attempts have been made to apply simi-

lar methods to isolate single layers of other stacked three-dimensional materials and

study their properties. This resulted in a wide variety of materials with a wide range

of properties and potential applications, ranging from insulators (hBN), direct band

gap semiconductors (MoS2), metals (NbSe2) and semi-metals (WTe2). From the tech-

nological point-of-view, the possibility of having atomically-thin devices, with superior

characteristics and the ability to tune their desired properties by combining different

layers of these materials in a Lego-like manner to form van der Waals heterostructures

is very promising and revolutionary [1]. From the theoretical point-of-view, these

two dimensional (2D) materials provide an exciting playground for condensed matter

theory studies to explore new and exotic phenomena unique to these ideal 2D systems.

One particular shortcoming of graphene, motivating the further search for new

2D materials was the lack of a finite band gap. The isolation of a single layer of

MoS2 and the demonstration of a direct band gap [2] with significant optical response

as compared to the bulk material have made it promising for both electronic and

optoelectronic applications, and started an expansive research on the family of the

semiconducting direct band gap 2D transition metal dichalcogenides (TMDCs) com-

prising of MoS2,MoSe2,WS2, and WSe2. These studies revealed numerous exciting

properties of these materials including: direct band gap in the visible range, valley

circular dichroism [3, 4], Berry curvature and spin-valley effects [5, 6, 7], strong spin-

orbit coupling and large spin-orbit splitting [8], strong light-matter coupling [9], and

tightly bound excitons and trions [10, 11] up to room temperature.
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12 CHAPTER 1. INTRODUCTION

The preferable optical properties of monolayer TMDCs and their heterostructures,

have been utilised and demonstrated in optoelectronic devices such as: photodetectors,

phototransistors, light emitting diodes, photodiodes, and solar cells [12, 13, 14, 15, 16,

17], as well as single photon emitters [18].

The utilisation of TMDCs in optoelectronic devices requires an understanding of

the processes governing the optoelectronic properties of these materials. The reduced

dimensionality of these materials has important implications on the density of states

of the carriers, interaction between carriers, interaction between carriers and phonons,

and interaction with the environment, all influencing the resulting optical properties

of these materials.

Light emission from semiconductors involves the radiative recombination of electron-

hole pairs. These are formed by light with a photon energy greater than the band gap,

exciting electrons from the valence band into the conduction band. The radiative

recombination is then governed by the kinetics of the carriers relaxing from the ex-

cited states, which involves interaction with phonons, interaction with other carriers,

and with impurities, as well as the selection rules and conservation laws governing

the light-matter coupling and recombination. Electron-electron scattering can also

give rise to non-radiative Auger–type processes where the energy of the recombining

electron-hole pair is transferred to another carrier. The relative importance of such

processes determines the efficiency of these materials for light emission.

The modified Coulomb interaction between electrons and holes in these two dimen-

sional materials due to the reduced screening as compared to the three dimensional

case [19, 20], leads to the most prominent feature observed in the optical studies of

TMDCs, these are the strongly bound multi-particle complexes, such as excitons and

trions, with a wide range of possible configurations due to the spin and valley degrees

of freedom in these materials. The photon energies resulting from the recombination

of these complexes are determined by their binding energies as well as the recombi-

nation process. Therefore, an understanding of the resulting optical spectra requires

the classification of the various complexes, calculation of their binding energies and

understanding the processes resulting in their radiative recombination.

The two dimensional nature of these materials, allows to naturally stack them to-

gether in the form of van der Waals heterostructures, formed by different TMDCs, or
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few-layers of the same TMDC. This allows to extend the applicability of these mate-

rials for device applications, introducing new degrees of freedom, such as the choice

of materials, their stacking and alignment. The stacking of different TMDCs in a

heterobilayer results in a staggered band structure with electrons and holes localized

on opposite layers, allowing the formation of interlayer complexes with modified op-

tical properties and recombination processes. The momentum mismatch between the

electrons and holes in the misaligned and incommensurate layers, raises the question

of how these complexes can recombine to emit light. A possible channel proposed in

this thesis involves the localization of complexes on donor impurities, which result in

distinct optical spectra with strong dependences on the alignment and doping in the

system.

Alternatively, multilayers of the same van der Waals coupled TMDCs, form a quan-

tum well like structure, with the states in the growth direction being quantized, forming

subbands. This allows to extend the optical applicability of these materials from their

main interband gap (∼ 2 eV) in the visible range to the smaller intersubband gaps

(∼ 10− 100 meV) in the highly useful and popular infrared spectral range, which has

applications in various industries. Utilizing these subbands in optoelectronic applica-

tions requires the modelling and characterization of the resulting optical properties of

these subbands, the coupling to light, symmetry properties and broadening sources.

In this thesis we analyse the subband structures for both p-doped and n-doped few

layer TMDCs and obtain the resulting intersubband absorption spectra.

This thesis focuses on the optoelectronics of monolayer TMDCs, their heterostruc-

tures and multilayer structures. The published (or submitted) papers included in this

thesis study the introduced aspects related to the optoelectronics of TMDCs, which

are of both theoretical and application interest, elucidating and extending the under-

standing of the potential, limitations, and directions of research for these materials,

for the use in future device applications. The chapters form a sequential and coher-

ent picture of specific processes and features, characterizing and governing the optical

properties of these materials, starting from the monolayer, to heterobilayers and fi-

nally multilayers, each containing the relevant published works in a journal format.

The thesis is organized as follows:
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Chapter 2

Chapter 2 provides a general background and literature review of transition metal

dichalcogenides.

Chapter 3

Chapter 3 deals with kinetic processes in monolayer TMDCs. It includes two publi-

cations on the relaxation of photo-excited carriers due to emission of optical phonons,

leading to pico-second relaxation times due to strong coupling to optical phonons [21]

and the Auger recombination of dark excitons in WS2 and WSe2, providing a possible

explanation for the observed low quantum efficiencies in these materials.

Chapter 4

Chapter 4 deals with bound complexes in monolayer TMDCs. The work presented

includes the radiative recombination of semidark trions and biexcitons in WS2,WSe2

[22], where we present a novel process for the optical activation of the dark ground

state trions and biexcitons in WS2 and WSe2, and the classification of excitonic com-

plexes into dark and bright, and the resulting emission spectra obtained from the

calculated binding energies of the various complexes using diffusion quantum Monte

Carlo methods [23].

Chapter 5

Chapter 5 deals with donor bound complexes in heterobilayer MoSe2/WSe2, and in-

cludes the publication [24]. We obtain the radiative recombination rates and doping

dependent spectra of donor bound complexes for both closely aligned and asymptotics

for strongly misaligned layers, using the localized nature of the donor to overcome the

valley mismatch between electrons and holes, which suppresses the radiative recom-

bination. We use quantum Monte Carlo calculations to obtain binding energies using

the full screened bilayer interaction and overlap integrals between wave functions of

the complexes.
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Chapter 6

Chapter 6 deals with 2H-stacked few-layers and bulk TMDCs. We present a k · p-tight

binding model describing the subband energies and dispersions in few-layer 2H-stacked

TMDCs and obtain the intesrubband optical absorption line shapes for lightly p-doped

and n-doped films, and provide potential device configurations utilising these materials.

Chapter 7

Chapter 7 provides the conclusions of the thesis and outlook on future research direc-

tions.



Chapter 2

Overview

2.1 2D transition metal dichalcogenides

Monolayer transition metal dichalcogenides (TMDCs) are atomically thin materials

with a unit cell described by MX2, where a transition metal M is covalently bonded to

two chalcogen atoms X and arranged in a triangular lattice with two sublattices giving

a hexagonal crystal as shown in Fig. 2.1a. The primitive lattice vectors are given by

a1 = a(1, 0) and a2 = a
2
(1,
√

3), where a is the lattice constant. The reciprocal lattice

vectors are given by b1 = (2π
a
,− 2π√

3a
) and b2 = (0, 4π√

3a
), giving a hexagonal Brillouin

zone (BZ) with two inequivalent points (valleys) at the corners K and K′ = −K, with

|K| = 4π
3a

. The metal-chalcogen distance in the unit cell is given by dMX = a/
√

3,

such that the two chalcogen positions in the unit cell with the metal at the origin

M = (0, 0, 0), are given by X1,2 = a
2
(1, 1√

3
,±dxx

2
), where dXX is the distance in the out

of plane direction between the two chalcogen atoms.

The most common and widely studied TMDCs, which we will focus on in this

thesis, consist of M = Mo,W (Molybdenum or Tungsten) and X = S, Se (Sulphur or

Selenium), which are found to be direct band gap semiconductors with the conduction

band (CB) minimum and valence band (VB) maximum located at the corners of the

BZ, K/K ′ valleys, as shown in Fig. 2.2.

16
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dXX
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<latexit sha1_base64="lHy4bSlr0+kmcBP/gXsLHe0z1aA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIrgkkS5idzCZDZmfWeShhyU948aDi1e/x5t84SfagiQUNRVU33V1xxpk2vv/tLS2vrK6tlzbKm1vbO7uVvf17La0iNCSSS9WKsaacCRoaZjhtZYriNOa0GQ+vJ37zkSrNpLgzo4xGKe4LljCCjZNaHZthpeRTt1L1a/4UaJEEBalCgUa38tXpSWJTKgzhWOt24GcmyrEyjHA6LnesphkmQ9ynbUcFTqmO8um9Y3TslB5KpHIlDJqqvydynGo9SmPXmWIz0PPeRPzPa1uTXEQ5E5k1VJDZosRyZCSaPI96TFFi+MgRTBRztyIywAoT4yIquxCC+ZcXSXhau6z5t2fV+lWRRgkO4QhOIIBzqMMNNCAEAhye4RXevAfvxXv3PmatS14xcwB/4H3+ANlykAk=</latexit><latexit sha1_base64="lHy4bSlr0+kmcBP/gXsLHe0z1aA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIrgkkS5idzCZDZmfWeShhyU948aDi1e/x5t84SfagiQUNRVU33V1xxpk2vv/tLS2vrK6tlzbKm1vbO7uVvf17La0iNCSSS9WKsaacCRoaZjhtZYriNOa0GQ+vJ37zkSrNpLgzo4xGKe4LljCCjZNaHZthpeRTt1L1a/4UaJEEBalCgUa38tXpSWJTKgzhWOt24GcmyrEyjHA6LnesphkmQ9ynbUcFTqmO8um9Y3TslB5KpHIlDJqqvydynGo9SmPXmWIz0PPeRPzPa1uTXEQ5E5k1VJDZosRyZCSaPI96TFFi+MgRTBRztyIywAoT4yIquxCC+ZcXSXhau6z5t2fV+lWRRgkO4QhOIIBzqMMNNCAEAhye4RXevAfvxXv3PmatS14xcwB/4H3+ANlykAk=</latexit><latexit sha1_base64="lHy4bSlr0+kmcBP/gXsLHe0z1aA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIrgkkS5idzCZDZmfWeShhyU948aDi1e/x5t84SfagiQUNRVU33V1xxpk2vv/tLS2vrK6tlzbKm1vbO7uVvf17La0iNCSSS9WKsaacCRoaZjhtZYriNOa0GQ+vJ37zkSrNpLgzo4xGKe4LljCCjZNaHZthpeRTt1L1a/4UaJEEBalCgUa38tXpSWJTKgzhWOt24GcmyrEyjHA6LnesphkmQ9ynbUcFTqmO8um9Y3TslB5KpHIlDJqqvydynGo9SmPXmWIz0PPeRPzPa1uTXEQ5E5k1VJDZosRyZCSaPI96TFFi+MgRTBRztyIywAoT4yIquxCC+ZcXSXhau6z5t2fV+lWRRgkO4QhOIIBzqMMNNCAEAhye4RXevAfvxXv3PmatS14xcwB/4H3+ANlykAk=</latexit>

#
<latexit sha1_base64="NZV0YjpWqaUUZcJ32/VPTT/A7Ik=">AAAB8HicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnorevFYwbXFdinZNNuGZpMlyVrK0n/hxYOKV3+ON/+N2XYP2joQGGbekPcmTDjTxnW/ndLK6tr6RnmzsrW9s7tX3T940DJVhPpEcqnaIdaUM0F9wwyn7URRHIectsLRTe63nqjSTIp7M0loEOOBYBEj2FjpsduXY4GVkuNetebW3RnQMvEKUoMCzV71y4ZJGlNhCMdadzw3MUGGlWGE02mlm2qaYDLCA9qxVOCY6iCbbTxFJ1bpo0gq+4RBM/V3IsOx1pM4tJMxNkO96OXif14nNdFlkDGRpIYKMv8oSjkyEuXnoz5TlBg+sQQTxeyuiAyxwsTYkiq2BG/x5GXin9Wv6u7dea1xXbRRhiM4hlPw4AIacAtN8IGAgGd4hTdHOy/Ou/MxHy05ReYQ/sD5/AFpUJDw</latexit><latexit sha1_base64="NZV0YjpWqaUUZcJ32/VPTT/A7Ik=">AAAB8HicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnorevFYwbXFdinZNNuGZpMlyVrK0n/hxYOKV3+ON/+N2XYP2joQGGbekPcmTDjTxnW/ndLK6tr6RnmzsrW9s7tX3T940DJVhPpEcqnaIdaUM0F9wwyn7URRHIectsLRTe63nqjSTIp7M0loEOOBYBEj2FjpsduXY4GVkuNetebW3RnQMvEKUoMCzV71y4ZJGlNhCMdadzw3MUGGlWGE02mlm2qaYDLCA9qxVOCY6iCbbTxFJ1bpo0gq+4RBM/V3IsOx1pM4tJMxNkO96OXif14nNdFlkDGRpIYKMv8oSjkyEuXnoz5TlBg+sQQTxeyuiAyxwsTYkiq2BG/x5GXin9Wv6u7dea1xXbRRhiM4hlPw4AIacAtN8IGAgGd4hTdHOy/Ou/MxHy05ReYQ/sD5/AFpUJDw</latexit><latexit sha1_base64="NZV0YjpWqaUUZcJ32/VPTT/A7Ik=">AAAB8HicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnorevFYwbXFdinZNNuGZpMlyVrK0n/hxYOKV3+ON/+N2XYP2joQGGbekPcmTDjTxnW/ndLK6tr6RnmzsrW9s7tX3T940DJVhPpEcqnaIdaUM0F9wwyn7URRHIectsLRTe63nqjSTIp7M0loEOOBYBEj2FjpsduXY4GVkuNetebW3RnQMvEKUoMCzV71y4ZJGlNhCMdadzw3MUGGlWGE02mlm2qaYDLCA9qxVOCY6iCbbTxFJ1bpo0gq+4RBM/V3IsOx1pM4tJMxNkO96OXif14nNdFlkDGRpIYKMv8oSjkyEuXnoz5TlBg+sQQTxeyuiAyxwsTYkiq2BG/x5GXin9Wv6u7dea1xXbRRhiM4hlPw4AIacAtN8IGAgGd4hTdHOy/Ou/MxHy05ReYQ/sD5/AFpUJDw</latexit>

(a)

(b)

(c)

(d)

"
<latexit sha1_base64="lHy4bSlr0+kmcBP/gXsLHe0z1aA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIrgkkS5idzCZDZmfWeShhyU948aDi1e/x5t84SfagiQUNRVU33V1xxpk2vv/tLS2vrK6tlzbKm1vbO7uVvf17La0iNCSSS9WKsaacCRoaZjhtZYriNOa0GQ+vJ37zkSrNpLgzo4xGKe4LljCCjZNaHZthpeRTt1L1a/4UaJEEBalCgUa38tXpSWJTKgzhWOt24GcmyrEyjHA6LnesphkmQ9ynbUcFTqmO8um9Y3TslB5KpHIlDJqqvydynGo9SmPXmWIz0PPeRPzPa1uTXEQ5E5k1VJDZosRyZCSaPI96TFFi+MgRTBRztyIywAoT4yIquxCC+ZcXSXhau6z5t2fV+lWRRgkO4QhOIIBzqMMNNCAEAhye4RXevAfvxXv3PmatS14xcwB/4H3+ANlykAk=</latexit><latexit sha1_base64="lHy4bSlr0+kmcBP/gXsLHe0z1aA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIrgkkS5idzCZDZmfWeShhyU948aDi1e/x5t84SfagiQUNRVU33V1xxpk2vv/tLS2vrK6tlzbKm1vbO7uVvf17La0iNCSSS9WKsaacCRoaZjhtZYriNOa0GQ+vJ37zkSrNpLgzo4xGKe4LljCCjZNaHZthpeRTt1L1a/4UaJEEBalCgUa38tXpSWJTKgzhWOt24GcmyrEyjHA6LnesphkmQ9ynbUcFTqmO8um9Y3TslB5KpHIlDJqqvydynGo9SmPXmWIz0PPeRPzPa1uTXEQ5E5k1VJDZosRyZCSaPI96TFFi+MgRTBRztyIywAoT4yIquxCC+ZcXSXhau6z5t2fV+lWRRgkO4QhOIIBzqMMNNCAEAhye4RXevAfvxXv3PmatS14xcwB/4H3+ANlykAk=</latexit><latexit sha1_base64="lHy4bSlr0+kmcBP/gXsLHe0z1aA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIrgkkS5idzCZDZmfWeShhyU948aDi1e/x5t84SfagiQUNRVU33V1xxpk2vv/tLS2vrK6tlzbKm1vbO7uVvf17La0iNCSSS9WKsaacCRoaZjhtZYriNOa0GQ+vJ37zkSrNpLgzo4xGKe4LljCCjZNaHZthpeRTt1L1a/4UaJEEBalCgUa38tXpSWJTKgzhWOt24GcmyrEyjHA6LnesphkmQ9ynbUcFTqmO8um9Y3TslB5KpHIlDJqqvydynGo9SmPXmWIz0PPeRPzPa1uTXEQ5E5k1VJDZosRyZCSaPI96TFFi+MgRTBRztyIywAoT4yIquxCC+ZcXSXhau6z5t2fV+lWRRgkO4QhOIIBzqMMNNCAEAhye4RXevAfvxXv3PmatS14xcwB/4H3+ANlykAk=</latexit>

#
<latexit sha1_base64="NZV0YjpWqaUUZcJ32/VPTT/A7Ik=">AAAB8HicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnorevFYwbXFdinZNNuGZpMlyVrK0n/hxYOKV3+ON/+N2XYP2joQGGbekPcmTDjTxnW/ndLK6tr6RnmzsrW9s7tX3T940DJVhPpEcqnaIdaUM0F9wwyn7URRHIectsLRTe63nqjSTIp7M0loEOOBYBEj2FjpsduXY4GVkuNetebW3RnQMvEKUoMCzV71y4ZJGlNhCMdadzw3MUGGlWGE02mlm2qaYDLCA9qxVOCY6iCbbTxFJ1bpo0gq+4RBM/V3IsOx1pM4tJMxNkO96OXif14nNdFlkDGRpIYKMv8oSjkyEuXnoz5TlBg+sQQTxeyuiAyxwsTYkiq2BG/x5GXin9Wv6u7dea1xXbRRhiM4hlPw4AIacAtN8IGAgGd4hTdHOy/Ou/MxHy05ReYQ/sD5/AFpUJDw</latexit><latexit sha1_base64="NZV0YjpWqaUUZcJ32/VPTT/A7Ik=">AAAB8HicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnorevFYwbXFdinZNNuGZpMlyVrK0n/hxYOKV3+ON/+N2XYP2joQGGbekPcmTDjTxnW/ndLK6tr6RnmzsrW9s7tX3T940DJVhPpEcqnaIdaUM0F9wwyn7URRHIectsLRTe63nqjSTIp7M0loEOOBYBEj2FjpsduXY4GVkuNetebW3RnQMvEKUoMCzV71y4ZJGlNhCMdadzw3MUGGlWGE02mlm2qaYDLCA9qxVOCY6iCbbTxFJ1bpo0gq+4RBM/V3IsOx1pM4tJMxNkO96OXif14nNdFlkDGRpIYKMv8oSjkyEuXnoz5TlBg+sQQTxeyuiAyxwsTYkiq2BG/x5GXin9Wv6u7dea1xXbRRhiM4hlPw4AIacAtN8IGAgGd4hTdHOy/Ou/MxHy05ReYQ/sD5/AFpUJDw</latexit><latexit sha1_base64="NZV0YjpWqaUUZcJ32/VPTT/A7Ik=">AAAB8HicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnorevFYwbXFdinZNNuGZpMlyVrK0n/hxYOKV3+ON/+N2XYP2joQGGbekPcmTDjTxnW/ndLK6tr6RnmzsrW9s7tX3T940DJVhPpEcqnaIdaUM0F9wwyn7URRHIectsLRTe63nqjSTIp7M0loEOOBYBEj2FjpsduXY4GVkuNetebW3RnQMvEKUoMCzV71y4ZJGlNhCMdadzw3MUGGlWGE02mlm2qaYDLCA9qxVOCY6iCbbTxFJ1bpo0gq+4RBM/V3IsOx1pM4tJMxNkO96OXif14nNdFlkDGRpIYKMv8oSjkyEuXnoz5TlBg+sQQTxeyuiAyxwsTYkiq2BG/x5GXin9Wv6u7dea1xXbRRhiM4hlPw4AIacAtN8IGAgGd4hTdHOy/Ou/MxHy05ReYQ/sD5/AFpUJDw</latexit>

"
<latexit sha1_base64="lHy4bSlr0+kmcBP/gXsLHe0z1aA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIrgkkS5idzCZDZmfWeShhyU948aDi1e/x5t84SfagiQUNRVU33V1xxpk2vv/tLS2vrK6tlzbKm1vbO7uVvf17La0iNCSSS9WKsaacCRoaZjhtZYriNOa0GQ+vJ37zkSrNpLgzo4xGKe4LljCCjZNaHZthpeRTt1L1a/4UaJEEBalCgUa38tXpSWJTKgzhWOt24GcmyrEyjHA6LnesphkmQ9ynbUcFTqmO8um9Y3TslB5KpHIlDJqqvydynGo9SmPXmWIz0PPeRPzPa1uTXEQ5E5k1VJDZosRyZCSaPI96TFFi+MgRTBRztyIywAoT4yIquxCC+ZcXSXhau6z5t2fV+lWRRgkO4QhOIIBzqMMNNCAEAhye4RXevAfvxXv3PmatS14xcwB/4H3+ANlykAk=</latexit><latexit sha1_base64="lHy4bSlr0+kmcBP/gXsLHe0z1aA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIrgkkS5idzCZDZmfWeShhyU948aDi1e/x5t84SfagiQUNRVU33V1xxpk2vv/tLS2vrK6tlzbKm1vbO7uVvf17La0iNCSSS9WKsaacCRoaZjhtZYriNOa0GQ+vJ37zkSrNpLgzo4xGKe4LljCCjZNaHZthpeRTt1L1a/4UaJEEBalCgUa38tXpSWJTKgzhWOt24GcmyrEyjHA6LnesphkmQ9ynbUcFTqmO8um9Y3TslB5KpHIlDJqqvydynGo9SmPXmWIz0PPeRPzPa1uTXEQ5E5k1VJDZosRyZCSaPI96TFFi+MgRTBRztyIywAoT4yIquxCC+ZcXSXhau6z5t2fV+lWRRgkO4QhOIIBzqMMNNCAEAhye4RXevAfvxXv3PmatS14xcwB/4H3+ANlykAk=</latexit><latexit sha1_base64="lHy4bSlr0+kmcBP/gXsLHe0z1aA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvQi8cIrgkkS5idzCZDZmfWeShhyU948aDi1e/x5t84SfagiQUNRVU33V1xxpk2vv/tLS2vrK6tlzbKm1vbO7uVvf17La0iNCSSS9WKsaacCRoaZjhtZYriNOa0GQ+vJ37zkSrNpLgzo4xGKe4LljCCjZNaHZthpeRTt1L1a/4UaJEEBalCgUa38tXpSWJTKgzhWOt24GcmyrEyjHA6LnesphkmQ9ynbUcFTqmO8um9Y3TslB5KpHIlDJqqvydynGo9SmPXmWIz0PPeRPzPa1uTXEQ5E5k1VJDZosRyZCSaPI96TFFi+MgRTBRztyIywAoT4yIquxCC+ZcXSXhau6z5t2fV+lWRRgkO4QhOIIBzqMMNNCAEAhye4RXevAfvxXv3PmatS14xcwB/4H3+ANlykAk=</latexit>

#
<latexit sha1_base64="NZV0YjpWqaUUZcJ32/VPTT/A7Ik=">AAAB8HicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnorevFYwbXFdinZNNuGZpMlyVrK0n/hxYOKV3+ON/+N2XYP2joQGGbekPcmTDjTxnW/ndLK6tr6RnmzsrW9s7tX3T940DJVhPpEcqnaIdaUM0F9wwyn7URRHIectsLRTe63nqjSTIp7M0loEOOBYBEj2FjpsduXY4GVkuNetebW3RnQMvEKUoMCzV71y4ZJGlNhCMdadzw3MUGGlWGE02mlm2qaYDLCA9qxVOCY6iCbbTxFJ1bpo0gq+4RBM/V3IsOx1pM4tJMxNkO96OXif14nNdFlkDGRpIYKMv8oSjkyEuXnoz5TlBg+sQQTxeyuiAyxwsTYkiq2BG/x5GXin9Wv6u7dea1xXbRRhiM4hlPw4AIacAtN8IGAgGd4hTdHOy/Ou/MxHy05ReYQ/sD5/AFpUJDw</latexit><latexit sha1_base64="NZV0YjpWqaUUZcJ32/VPTT/A7Ik=">AAAB8HicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnorevFYwbXFdinZNNuGZpMlyVrK0n/hxYOKV3+ON/+N2XYP2joQGGbekPcmTDjTxnW/ndLK6tr6RnmzsrW9s7tX3T940DJVhPpEcqnaIdaUM0F9wwyn7URRHIectsLRTe63nqjSTIp7M0loEOOBYBEj2FjpsduXY4GVkuNetebW3RnQMvEKUoMCzV71y4ZJGlNhCMdadzw3MUGGlWGE02mlm2qaYDLCA9qxVOCY6iCbbTxFJ1bpo0gq+4RBM/V3IsOx1pM4tJMxNkO96OXif14nNdFlkDGRpIYKMv8oSjkyEuXnoz5TlBg+sQQTxeyuiAyxwsTYkiq2BG/x5GXin9Wv6u7dea1xXbRRhiM4hlPw4AIacAtN8IGAgGd4hTdHOy/Ou/MxHy05ReYQ/sD5/AFpUJDw</latexit><latexit sha1_base64="NZV0YjpWqaUUZcJ32/VPTT/A7Ik=">AAAB8HicbVBNSwMxFHxbv2r9qnr0EiyCp7IrgnorevFYwbXFdinZNNuGZpMlyVrK0n/hxYOKV3+ON/+N2XYP2joQGGbekPcmTDjTxnW/ndLK6tr6RnmzsrW9s7tX3T940DJVhPpEcqnaIdaUM0F9wwyn7URRHIectsLRTe63nqjSTIp7M0loEOOBYBEj2FjpsduXY4GVkuNetebW3RnQMvEKUoMCzV71y4ZJGlNhCMdadzw3MUGGlWGE02mlm2qaYDLCA9qxVOCY6iCbbTxFJ1bpo0gq+4RBM/V3IsOx1pM4tJMxNkO96OXif14nNdFlkDGRpIYKMv8oSjkyEuXnoz5TlBg+sQQTxeyuiAyxwsTYkiq2BG/x5GXin9Wv6u7dea1xXbRRhiM4hlPw4AIacAtN8IGAgGd4hTdHOy/Ou/MxHy05ReYQ/sD5/AFpUJDw</latexit>

(e) MoX2
<latexit sha1_base64="r1ksVehgh0OaZYpfjylldtkyx5U=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hU0Q1FvQixchgmsCmyXMTmaTIfNYZmaFsOQzvHhQ8erfePNvnCR70MSChqKqm+6uOOXMWN//9lZW19Y3Nktb5e2d3b39ysHho1GZJjQgiivdibGhnEkaWGY57aSaYhFz2o5HN1O//US1YUo+2HFKI4EHkiWMYOukMO9qge5Up9eY9CpVv+bPgJZJvSBVKNDqVb66fUUyQaUlHBsT1v3URjnWlhFOJ+VuZmiKyQgPaOioxIKaKJ+dPEGnTumjRGlX0qKZ+nsix8KYsYhdp8B2aBa9qfifF2Y2uYxyJtPMUknmi5KMI6vQ9H/UZ5oSy8eOYKKZuxWRIdaYWJdS2YVQX3x5mQSN2lXNvz+vNq+LNEpwDCdwBnW4gCbcQgsCIKDgGV7hzbPei/fufcxbV7xi5gj+wPv8AST4kLM=</latexit><latexit sha1_base64="r1ksVehgh0OaZYpfjylldtkyx5U=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hU0Q1FvQixchgmsCmyXMTmaTIfNYZmaFsOQzvHhQ8erfePNvnCR70MSChqKqm+6uOOXMWN//9lZW19Y3Nktb5e2d3b39ysHho1GZJjQgiivdibGhnEkaWGY57aSaYhFz2o5HN1O//US1YUo+2HFKI4EHkiWMYOukMO9qge5Up9eY9CpVv+bPgJZJvSBVKNDqVb66fUUyQaUlHBsT1v3URjnWlhFOJ+VuZmiKyQgPaOioxIKaKJ+dPEGnTumjRGlX0qKZ+nsix8KYsYhdp8B2aBa9qfifF2Y2uYxyJtPMUknmi5KMI6vQ9H/UZ5oSy8eOYKKZuxWRIdaYWJdS2YVQX3x5mQSN2lXNvz+vNq+LNEpwDCdwBnW4gCbcQgsCIKDgGV7hzbPei/fufcxbV7xi5gj+wPv8AST4kLM=</latexit><latexit sha1_base64="r1ksVehgh0OaZYpfjylldtkyx5U=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hU0Q1FvQixchgmsCmyXMTmaTIfNYZmaFsOQzvHhQ8erfePNvnCR70MSChqKqm+6uOOXMWN//9lZW19Y3Nktb5e2d3b39ysHho1GZJjQgiivdibGhnEkaWGY57aSaYhFz2o5HN1O//US1YUo+2HFKI4EHkiWMYOukMO9qge5Up9eY9CpVv+bPgJZJvSBVKNDqVb66fUUyQaUlHBsT1v3URjnWlhFOJ+VuZmiKyQgPaOioxIKaKJ+dPEGnTumjRGlX0qKZ+nsix8KYsYhdp8B2aBa9qfifF2Y2uYxyJtPMUknmi5KMI6vQ9H/UZ5oSy8eOYKKZuxWRIdaYWJdS2YVQX3x5mQSN2lXNvz+vNq+LNEpwDCdwBnW4gCbcQgsCIKDgGV7hzbPei/fufcxbV7xi5gj+wPv8AST4kLM=</latexit>

WX2
<latexit sha1_base64="yEPF7ewQNOiSSng8DDxbnP8V62I=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd0gqLegF48RXBNMljA7mU2GzGOZmRXCkr/w4kHFq5/jzb9xkuxBEwsaiqpuurvilDNjff/bW1ldW9/YLG2Vt3d29/YrB4cPRmWa0JAornQ7xoZyJmlomeW0nWqKRcxpKx7dTP3WE9WGKXlvxymNBB5IljCCrZMe864WqNXu1Se9StWv+TOgZRIUpAoFmr3KV7evSCaotIRjYzqBn9oox9oywumk3M0MTTEZ4QHtOCqxoCbKZxdP0KlT+ihR2pW0aKb+nsixMGYsYtcpsB2aRW8q/ud1MptcRjmTaWapJPNFScaRVWj6PuozTYnlY0cw0czdisgQa0ysC6nsQggWX14mYb12VfPvzquN6yKNEhzDCZxBABfQgFtoQggEJDzDK7x5xnvx3r2PeeuKV8wcwR94nz9jjpBE</latexit><latexit sha1_base64="yEPF7ewQNOiSSng8DDxbnP8V62I=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd0gqLegF48RXBNMljA7mU2GzGOZmRXCkr/w4kHFq5/jzb9xkuxBEwsaiqpuurvilDNjff/bW1ldW9/YLG2Vt3d29/YrB4cPRmWa0JAornQ7xoZyJmlomeW0nWqKRcxpKx7dTP3WE9WGKXlvxymNBB5IljCCrZMe864WqNXu1Se9StWv+TOgZRIUpAoFmr3KV7evSCaotIRjYzqBn9oox9oywumk3M0MTTEZ4QHtOCqxoCbKZxdP0KlT+ihR2pW0aKb+nsixMGYsYtcpsB2aRW8q/ud1MptcRjmTaWapJPNFScaRVWj6PuozTYnlY0cw0czdisgQa0ysC6nsQggWX14mYb12VfPvzquN6yKNEhzDCZxBABfQgFtoQggEJDzDK7x5xnvx3r2PeeuKV8wcwR94nz9jjpBE</latexit><latexit sha1_base64="yEPF7ewQNOiSSng8DDxbnP8V62I=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd0gqLegF48RXBNMljA7mU2GzGOZmRXCkr/w4kHFq5/jzb9xkuxBEwsaiqpuurvilDNjff/bW1ldW9/YLG2Vt3d29/YrB4cPRmWa0JAornQ7xoZyJmlomeW0nWqKRcxpKx7dTP3WE9WGKXlvxymNBB5IljCCrZMe864WqNXu1Se9StWv+TOgZRIUpAoFmr3KV7evSCaotIRjYzqBn9oox9oywumk3M0MTTEZ4QHtOCqxoCbKZxdP0KlT+ihR2pW0aKb+nsixMGYsYtcpsB2aRW8q/ud1MptcRjmTaWapJPNFScaRVWj6PuozTYnlY0cw0czdisgQa0ysC6nsQggWX14mYb12VfPvzquN6yKNEhzDCZxBABfQgFtoQggEJDzDK7x5xnvx3r2PeeuKV8wcwR94nz9jjpBE</latexit>

Figure 2.1: (a) Top view and (b) side view of a monolayer TMDC, showing the hexago-
nal lattice structure with two sublattices composed of the metal (green) and chalcogen
(yellow) atoms. The grey shaded region is the primitive unit cell constructed using
the two primitive lattice vectors a1, a2 of magnitude a corresponding to the lattice
constant. (c) Hexagonal Brillouin zone of 2D TMDC crystals including the symmetry
points Γ,M,K and the reciprocal lattice vectors b1, b2. (d) Sketch of the spin-orbit
split conduction and valence band edges at the corners of the Brillouin zone for WX2

and (e) MoX2 (X=S, Se).

E
[e

V
]

MoS2 MoSe2 WSe2WS2

Figure 2.2: DFT calculated band dispersions of the four studied monolayer TMDCs
MoS2,MoSe2,WS2 and WSe2, along a path in the Brillouin zone going through the
symmetry points (Γ → M → K → Γ), showing the direct band gap at the K point,
and the spin-orbit splitting in the valence and conduction bands. DFT data was
provided by Celal Yelgel, calculations were performed using Quantum ESPRESSO
[25].
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2.2 Symmetry of 2D TMDCs

The symmetry analysis and properties of a physical system have important implica-

tions on the description of the eigenstates and energies of the Hamiltonian describing

the system. The point group symmetry of the TMDCs crystals, giving the symmetry

operations leaving the crystal invariant is the D3h point group. The symmetry opera-

tions consist of C3, C
2
3 : rotations by 2π/3 and 4π/3 about an axis perpendicular to the

plane, σh: mirror reflection in the out of plane direction (z → −z), 3σv: three mirror

planes perpendicular to the plane and passing through the rotation axis (including

x → −x), 3C ′2: three rotations by π about an axis in the plane, and 2S3: two C3

about the axis perpendicular to the plane followed by out of plane mirror reflection.

In particular, TMDCs monolayer crystals lack inversion symmetry (r → −r), which

has important consequences for the electronic states as will be shown.

When considering the electronic states at the CB and VB edges at the K/K ′

valleys, the point group symmetry is reduced from the Γ-point full crystal point group,

with the group of the K wave vector being the Abelian point group C3h [26] with

the character table given in Table 2.1, containing the two C3 rotations, the out of

plane mirror symmetry σh and their combinations. From group theory we know that

the electronic states can be classified into the irreducible representations (irreps) of

the point group symmetry of the system according to their transformation under the

symmetry operations of the point group. States belonging to the same irrep are related

by symmetry operations and therefore have the same energy. As the irreps of the C3h

point group are one-dimensional, the states are non degenerate and can be chosen as

the eigenstates of the C3 symmetry operation.

Table 2.1: Character table for the irreducible representations of the point group C3h.
The irreps corresponding to the VB and CB state at the K/K ′ are denoted, ω = ei

2π
3 .

C3h E C3 C2
3 σh S3 σhC

2
3

A′ (VB–K/K ′) 1 1 1 1 1 1
A′′ 1 1 1 -1 -1 -1
E ′1 (CB–K) 1 ω ω∗ 1 ω ω∗

E ′2 (CB–K ′) 1 ω∗ ω 1 ω∗ ω
E ′′1 1 ω ω∗ -1 −ω −ω∗
E ′′2 1 ω∗ ω -1 −ω∗ -ω

Density functional theory (DFT) calculations have shown [28, 27, 29] that the states
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Figure 2.3: MoS2 bands orbital composition, separated into (a) metal d-orbitals, (b)
chalcogen p-orbitals. Figure taken from Ref. [27] under the terms of Creative Commons
Attribution 3.0 licence.

of the CB and VB electrons at the K/K ′ points are composed predominantly from the

even under z → −z metal d-orbitals (dz2 , dx2−y2 , dxy), with a small contribution from

the chalcogen p-orbitals (see Fig. 2.3). Additionally, in order to be classified under

the irreps of C3h they must transform into themselves under the symmetry operation

C3, which means they are eigenstates of the angular momentum operator L̂z = −i~ ∂
∂φ

.

The appropriate combinations of orbitals satisfying this are d±2 = 1√
2
(dxy ± idx2−y2)

for the valence band with magnetic quantum number mz = ±2 for the K and −K
valleys, respectively, and d0 = dz2 with mz = 0 for the conduction band. As such,

the CB Bloch states at the two valleys belong to the E ′1 and E ′2 irreps, which are

complex conjugates of each other, and the VB states belong to the A′ irrep. This can

be summarized as [26, 30]

Ĉ3|φτc 〉 = eiτ
2π
3 |φτc 〉,

Ĉ3|φτv〉 = |φτv〉,
(2.1)

where the rotation centre is at the centre of the hexagon, and |φτc 〉, |φτv〉 are the Bloch

states at the K/K ′ valleys, given in terms of the metal d-orbitals as [26]

φτα(r) =
1√
N

∑

R

eiτK·(R+r0)dτmα(r− (R + r0)), (2.2)

where the summation is over the lattice vectors R, r0 is the metal position relative

to the hexagon centre, and α = c, v with mc = 0,mv = 2 is the magnetic quantum
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Figure 2.4: DFT calculated band structure including spin–orbit coupling for (a) MoSe2

and (b) WSe2 showing the expectation value of the Ŝz spin operator at different k
points along the path in the Brillouin zone, with red (blue) indicating spin up (down).
DFT data was provided by Celal Yelgel.

numbers for the d0, d2 orbitals, composing the conduction and valence band states,

respectively. Note, that the eigenvalue under C3 rotation is a combination of rotating

the orbital and the plane wave parts of the Bloch wave function [30].

2.3 Spin-orbit coupling

The spin-orbit (SO) interaction is given by Ĥso ∝ 1
r
dV (r)
dr

L̂ · Ŝ, where V (r) is the

potential from the nucleus and L̂, Ŝ are the angular momentum and spin operators.

The heavy metal atoms present in TMDCs crystals and their d–orbitals composing the

Bloch states at the CB and VB edges, result in strong spin-orbit (SO) coupling effects

having profound impact on the resulting optoelectronic properties of these materials.

The σ̂h (z → −z) symmetry implies that the out of plane spin projection sz is a

good quantum number, [Ĥ, Ŝz] = 0 where Ŝz = ~
2
σz is the out of plane spin operator

given in terms of Pauli matrices, such that the electronic bands can be associated

with a given spin projection sz =↑, ↓ [31], and SO splitting of these bands is possible

through the Zeeman term Ĥso ∝ L̂zŜz, as shown in Fig. 2.4.

The VB states at the K/K ′–valleys being composed primarily from the d±2 (mz =

±2) orbitals (Fig. 2.3), resulting in large SO splitting of order ∼ 100 meV. The CB

K/K ′–point states being composed primarily from the metal d0 orbitals, having mag-

netic quantum number mz = 0, leading to zero SO splitting. A non-zero contribution
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Figure 2.5: Schematics of the electronic band structure at the K/K ′ points for WX2

(left) and MoX2 (right) TMDCs, showing the spin-orbit splitting in the CB and VB,
and the spin-valley locking. The colours indicate the out of plane spin projection
sz =↑, ↓. The dominant orbitals making up the electronic states are indicated next to
the CB and VB, and the optical selection rules for the two valleys are demonstrated
with the circular light polarization σ±.

however comes from first-order perturbation corrections due to the chalcogen p±1 or-

bitals as well as second order perturbation correction from d±1 bands from higher

conduction bands [28, 30], leading to a weaker but still significant SO splitting of few

to few tens of meV, in particular for the Tungsten based TMDCs.

The large SO splitting in the VB together with time reversal symmetry and lack

of inversion symmetry imply that the spin projection of holes in the VB is locked with

their valley index, with opposite spin states in a given valley being frozen out due to

the large energy difference. This feature is known as spin-valley locking in which holes

at the K valley band have spin projection ↑ whereas holes at the K ′ valley band edge

have spin projection ↓, with both states degenerate in energy due to time reversal

symmetry, Esz(K) = E−sz(−K) (see Fig. 2.5).

In the CB, first-principle calculations have shown that the SO splitting has opposite

splitting order in WS2,WSe2 as compared to MoS2,MoSe2 [27, 28, 32]. The sign of the

spin-orbit splitting between the two spin polarized bands comes from the competition

of the chalcogen p±1-orbitals and the higher conduction bands d±1-orbitals [28]. The

result is that the Tungsten based TMDCs have opposite out-of-plane spin projections

for the top VB and lower CB, as opposed to Molybdenum based TMDCs, Fig. 2.5.
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2.4 k · p model for TMDCs

The low energy CB and VB states reside at the K and K ′ points of the BZ as shown in

Fig. 2.2. It is therefore, beneficial to have a description of the bands in the vicinity of

this points. This is achieved using the k·p̂ method, where p̂ is the momentum operator

and k is a wave vector measured relative to the K/K ′ points. The Hamiltonian

describing the states at the vicinity of the K point is given by [27]

H = E0 +
p̂2

2m
+ V (r) +

~
m

k · p̂, (2.3)

where E0 is the total energy offset, the second term is the kinetic energy and V (r) is

the crystal potential. Given the solution to the Schrödinger equation at the K point

(k = 0), the k · p term, Hkp = ~
m

k · p̂ is treated in perturbation theory in the basis

of the Bloch eigenstates at the K point. The two-band model in the basis of the CB

and VB states at the K/K ′ points, spanned by the metal d-orbitals, |φτc 〉 = |d0〉 for

the conduction band and |φτv〉 = |d±2〉 for the valence band, is given for a specific spin

component by [27, 33],

Hτ
kp =




Eg
2

+ αk2 γ(τkx − iky)
γ(τkx + iky) −Eg

2
+ βk2


 , (2.4)

where Eg is the band gap at the K/K ′ point, τ = ± is the valley index corresponding

to K or −K, respectively, α and β are related to interband coupling with higher bands,

and γ is related to the momentum matrix element between CB and VB states and to

the Fermi velocity in the crystals through vF
c

= γ
~c ≈ 10−3, with c the speed of light in

vacuum. Additional terms can be added to this model to describe effects of trigonal

warping due to the C3 symmetry [26]. The spin components and spin–orbit splitting

in the conduction and valence bands can also be incorporated in Eq. 2.4 by the terms

∆c/vσzτ , where σz is the third Pauli matrix, and 2∆c/v are the spin–orbit splittings in

the conduction/valence bands.

The eigenstates and eigenvalues describing the electronic states in the vicinity of

the K/K ′ valleys up to second order in γk
Eg

are given by [34],

|uτc,k〉 = (1− γ2k2

2E2
g

)|uτc,0〉+
τγk

Eg
eiτφk |uτv,0〉, Ec(k) =

Eg
2

+ (α +
γ2

Eg
)k2;

|uτv,k〉 = −τγk
Eg

e−iτφk |uτc,0〉+ (1− γ2k2

2E2
g

)|uτv,0〉, Ev(k) = −Eg
2
− (

γ2

Eg
− β)k2,

(2.5)
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from which we define the effective mass of the carriers in the CB and VB bands

according to ~2

2mc
= α + γ2

Eg
, and ~2

2mv
= β − γ2

Eg
, giving a parabolic dispersion in the

vicinity of the K/K ′ valleys, with electron-hole asymmetry. The values of the different

parameters obtained from fitting to DFT calculations are given for the four TMDCs

in [27].

2.5 Optical selection rules

One of the most characteristic properties of TMDCs is related to their coupling to

light and the selection rules involved. The coupling to light is given by the minimal

substitution in the Hamiltonian by the replacement p̂→ p̂ + e
c
A (or k→ − i

~∇− e
~cA

in the k · p Hamiltonian in Eq. 2.4, [35]), where e is the electron charge, c is the speed

of light, and A is the vector potential of the electromagnetic field, and we assume the

vector potential to be uniform in space, due to the large typical wave length of light

relative to the unit cell size. The term in the Hamiltonian giving the coupling to light

is given by

Ĥr =
e

mc
p̂ ·A =

e

2mc
(p̂+A− + p̂−A+), (2.6)

where in the second equality we used p̂± = p̂x±ip̂y and similarly for the vector potential

A. The vector potential A± describes a photon with a given circular polarization (right

or left), such that the momentum matrix element p± are tied with specific circular

polarization. The momentum matrix element is given using the Feynman-Hellman

theorem by [36],

p̂cv =
m

~
〈uτc,k|∇kĤkp|uτv,k〉, (2.7)

giving at the valley τ ,

p̂cv
± =

mγ

~
(1± τ), (2.8)

Therefore, we see that the two valleys are coupled exclusively to circularly polarized

light with opposite orientation (as required by time reversal symmetry between the

two valleys), a property known as valley circular dichroism. This allows to excite

separately electron-hole pairs in the two valleys using left or right circularly polarized

light, and similarly radiative recombination of electron-hole pairs at the K/K ′ valleys

results in emission of left/right circularly polarized light, respectively [3, 4, 37].
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Additionally, as the momentum operator does not couple different spin projections

or different valley indexes, an important selection rule for the emission/absorption of

in-plane polarized light is the conservation of out of plane spin projection sz and valley

index. With reference to Fig. 2.5, the spin-valley locking property, and significant SO

splitting in the VB and CB discussed in section 2.3, restricts the bands, which can be

coupled by an in-plane polarized light. In particular, the opposite SO splitting between

CB and VB in WS2,WSe2 prevents the light absorption or emission for carriers in the

band edges, making them dark, whereas for MoS2,MoSe2 they are bright having the

same spin projections. Including the selection rules, the radiative matrix element can

be given generally as,

〈uτ,szc,k |Ĥr|uτ
′,s′z
v,k 〉 =

eγ

2~c
(1± τ)A∓δτ,τ ′δs,sz . (2.9)

An additional way to interpret the optical selection rules has to do with angular mo-

mentum conservation in the light absorption (or emission) process [4, 30]. A right/left

handed circular polarization carries angular momentum with projection mz = ±1. An

absorption of such light, therefore requires a corresponding change in the angular mo-

mentum of the electronic states, which due to the discrete 3-fold rotational symmetry

is conserved modulus 3, as confirmed by the relations in Eq. 2.1.

2.6 Phonons in TMDCs

Phonons or lattice vibrations play an important role in determining the properties of

given crystals through their interaction with the electrons, influencing both optical

[21, 38] as well as transport (mobility) [39, 39] related properties. Similarly to the

electronic states, the description of phonons is connected to the symmetry properties

of the crystal. The unit cell containing three atoms combined with three spatial degrees

of freedom per atom imply nine vibrational modes of which three are acoustical and

six are optical phonon modes. The nine phonon modes at the Γ point can be further

classified according to the irreducible representations (irreps) of the crystal, D3h (Table

2.2). The representation of the vibrational modes is given by the direct product of the

equivalence and vector representations [40],

Γvib = Γeq ⊗ Γvec. (2.10)
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Table 2.2: Character table for the irreducible representations of the point group D3h.

D3h E 2C3 3C ′2 σh 2S3 3σv
A′1 1 1 1 1 1 1
A′2 1 1 -1 1 1 -1
E ′ 2 -1 0 2 -1 0
A′′1 1 1 1 -1 -1 -1
A′′2 1 1 -1 -1 -1 1
E ′′ 2 -1 0 -2 1 0
Γvib 9 0 -1 1 -2 3

Figure 2.6: (a) DFT calculated phonon spectrum of monolayer MoS2. (b) The Γ-point
phonon modes, and the atomic displacements of the chalcogens and metal in the given
phonon modes, classified according to the irreps of D3h.

The character of the equivalence representation is given by the number of atoms

invariant (up to lattice vector translation) under the given symmetry operation, and

the three dimensional vector (x, y, z) representation for D3h is given by Γvec = E ′⊕A′′2,

where E ′ corresponds to the in–plane vector (x, y), and A′′2 corresponds to the out of

plane coordinate z. The reduction of the vibrational modes representation into the

irreps of D3h is given by

Γvib = 2E ′ ⊕ A′1 ⊕ 2A′′2 ⊕ E ′′, (2.11)

where each irrep corresponds to single or degenerate phonon modes, depending on the

dimensionality of the irrep. Fig. 2.6 shows the DFT calculated phonon dispersions for

monolayer MoS2 and the classification of the Γ–point phonon modes into irreps of D3h,

as well as the atomic displacements within the unit cell, which transform according to

the corresponding irreps.
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2.6.1 Electron-phonon coupling

The electron-phonon interaction Hamiltonian is given in second quantization notation

by

He−ph =
∑

µ

∑

q,k

gµ,qc
†
k+qck(a†µ,−q + aµ,q), (2.12)

where ck(c†k) denotes an annihilation (creation) operator of an electron with wave

vector k, and aµ,q(a†µ,q) denotes an annihilation(creation) operator of a phonon in

mode µ and wave vector q. The two processes described by the Hamiltonian involve

phonon absorption with wave vector q or phonon emission with wave vector −q, both

resulting in an electron scattered from wave vector k to wave vector k + q. The

electron-phonon coupling constant gµ,q is given by the matrix element[39, 41, 42]

gµ,q = 〈k + q|δVµ(r)|k〉, (2.13)

where δVµ(r) is the change in the potential acting on the electrons due to the lattice

displacement induced by the phonon mode µ. Using group theory we can determine

whether a given phonon coupling is non zero. The selection rule is given by

Γµ ∈ Γc/v ⊗ Γc/v, (2.14)

where Γc/v is the irrep of the Bloch states of the carriers at the CB or VB, and Γµ

is the irrep of the phonon normal mode. In particular, the conduction and valence

band states, at the K and K ′ points of the BZ, are even under mirror plane reflection

σ̂h, therefore only the phonon modes which are symmetric under σ̂h, are coupled to

the carriers. Additionally, for the acoustic and transverse optical phonon modes, as

they both transform according to the E ′ irrep or the vector representation, in order

for the interaction to be a scalar, or transforming according to the identity irrep A′1,

the coupling must be of the form δVµ ∝ q · uµ, where the proportionality constant

has units of energy independent of the wave vector q. Therefore, for Γ-point (q → 0)

phonons the coupling is vanishingly small.
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2.7 Excitons, trions and biexcitons in TMDCs

The 2D confinement of carriers in monolayer TMDCs together with the relatively high

effective masses of the carriers (electrons and holes) results in tightly bound multi-

particle complexes such as: excitons (electron-hole pairs), trions (charged excitons) and

biexcitons (two bound excitons), which are bound by the Coulomb interaction between

the constituents, with binding energies in the range of tens to hundreds of meV,

significantly higher than in conventional semiconductors, as obtained using ab–initio

calculations [43, 23, 44], and confirmed in photoluminescence experiments. Therefore,

the optical response of these materials is dominated by the tightly bound complexes

[45, 46]. The modified dielectric environment and the reduced dimensionality of two

dimensional materials, result in a modification to the electron-electron interaction in

2D, which is given in momentum space by [43, 19, 47, 48],

Vq =
2πe2

εq(1 + r∗q)
, (2.15)

where r∗ = 2πκ is the screening length related to the polarizability of the material κ,

and ε is the dielectric constant of the environment of the monolayer (ε = 1 for vacuum).

This form of the interaction is similar to the regular Coulomb interaction in 3D, Vq =

4πe2/εq, with the additional momentum dependent static dielectric function ε(q) =

1 + r∗q, originating from the reduced dimensionality, and the in-plane polarizability

of the material. Following a Fourier transformation into real space, the interaction

potential in real space is known as the Keldysh potential given by [43, 19],

V (r) =
πe2

2εr∗
[H0(r/r∗)− Y0(r/r∗)], (2.16)

where H0(r) is the Struve function and Y0(r) a Bessel function of the second kind.

In real space, the screening length r∗ can be seen as defining two limiting regimes.

At distances greater than the screening length (r > r∗), the potential reduces to an

unscreened Coulomb potential ∼ e2/εr, while at shorter distances it reduces to a

logarithmic potential ∼ e2/εr∗ log(r∗/r) [48, 49]. Most notably, the modified interac-

tion results in a modification to the simple 2D Hydrogen–like spectrum in free space,

approaching the 2D hydrogen limit for large principle quantum number n [20, 43, 44].

Additionally, the spin and valley degrees of freedom of the carriers result in a large

variety of possible complexes [50]. In particular, the different ordering of the spin-orbit
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splitting in the CB between the Tungsten and Molybdenum based TMDCs (Fig. 2.5)

results in optically active (bright) and inactive (dark) complexes in accordance with

the optical selection rules discussed in 2.5 and Eq. 2.9.

2.7.1 Excitons

Within the effective mass approximation the exciton state can be described as a su-

perposition of electron and hole Bloch states connected by an envelope function with

a spread much greater than the unit cell, also known as the Wannier-Mott exciton.

The exciton state is given by [35],

|X〉 =

∫
d2red

2rh
eiQ·Rcm

√
S

ΦX(re − rh)Ψ
†
c,τ,s(re)Ψv,τ ′,s′(rh)|0〉, (2.17)

where Ψ
(†)
c/v,τ,s(rα) are the conduction (c) or valence (v) band field operators in valley τ

with spin projection s, Q is the exciton centre of mass wave vector, Rcm = mere+mhrh
mX

is the centre of mass coordinate with mX = me +mh the total exciton mass given by

the sum of the electron and hole masses, S is the sample area normalization factor,

and ΦX(r) is the wave function describing the relative motion of the electron and

hole. Alternatively, the exciton state can be described in momentum space using the

creation and annihilation operators described by the relation

Ψ†c/v,τ,s(r) =
∑

k

e−i(τK+k)·r
√
S

c†c/v,τ,s(k). (2.18)

Using this in Eq. (2.17) we get,

|X〉 =
1√
S

∑

q

Φ̃x(q)c†c,τ,s(
me

mX

Q + q)cv,τ ′,s(q−
mh

mX

Q), (2.19)

where q = mhke+mekv
mX

is the relative momentum of the electron and hole, Q = ke− kv

is the centre of mass momentum of the exciton1, and Φ̃X(q) is the Fourier transform

of the relative motion wave function

Φ̃X(q) =

∫
d2re−iq·rΦX(r). (2.20)

In this picture, the exciton can be viewed as a superposition of electron and hole

states with wave vectors modulated by the Fourier transform of the relative motion

1Note that the wave vector here is that of the valence band state, the corresponding hole (missing
electron) wave vector is kh = −kv.
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wave function. The real space relative motion wave function is peaked at zero sep-

aration with a width aX ≈ 10 Å being the exciton’s effective Bohr radius, and the

corresponding relative motion wave function in momentum space is centred around

q = 0 relative momentum with width ∼ 1/aX , indicating that the contribution to

the exciton wave function mainly comes from the carriers with wave vectors of order

k ≤ 1/aX .

The exciton relative motion wave function is obtained by solving the time–independent

Schrödinger equation

[
−~2∇2

e

2me

− ~2∇2
h

2mh

+ V (|re − rh|)
]
ψ(Rcm)ΦX(re−rh) = Eψ(Rcm)ΦX(|re−rh|), (2.21)

where the exciton’s wave function was separated into a centre of mass part and relative

motion part. Changing the coordinates from re, rh to the relative motion r = re − rh,

and centre of mass motion Rcm, we separate the problem to the centre of mass motion

and relative motion. The Schrödinger equation for the relative motion is given by

[
−~2∇2

2µ
+ V (r)

]
ΦX(r) = −EbΦX(r), (2.22)

where µ = memh
mX

is the exciton’s reduced mass and V (r) is the electron-hole interaction

potential and Eb is the binding energy such that the total exciton energy (measured

relative to the band gap) is E = −Eb + ~2Q2

2mX
.

Eq. 2.22 can be solved numerically for the binding energy and wave function of the

ground state or excited states using the finite element method, giving binding energies

of order ∼ 0.5 eV [23].

The strong binding of the electron and hole in the exciton result in a strong cou-

pling to light [51], giving fast radiative recombination times. To obtain the radiative

rate of the bright excitons we consider the light–mater Hamiltonian given in second

quantization by

Ĥr =
eγ

~c

√
4π~c
qV

∑

qz ,q‖,τ,s

a†q,τ

∫
d2re−iq||·rΨ†v,τ,s(r)Ψc,τ,s(r) +H.c. (2.23)

The light vector potential field is expanded in terms of right and left handed circularly

polarized modes denoted by the valley index τ = ±, with a†q‖,τ denoting a photon

creation operator with in-plane wave vector q‖ and polarization τ = ±, determined by
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the valley of the recombining electron and hole. The radiative rate is obtained using

Fermi’s Golden rule,

τ−1 =
2π

~
∑

q

|Mr|2δ(Ei − Ef ), (2.24)

where the summation is over the final state photon wave vector. The radiative matrix

element is given by,

Mr = 〈q|Hr|X〉 =
eγ

~c

√
4π~c
Lq

ΦX(0)δq‖,Q, (2.25)

where Q is the centre of mass wave vector of the exciton, and δq||,Q ensures in–plane

momentum conservation in the process. Using this in the Fermi Golden rule gives,

τ−1 =
1

~
8π2e2γ2

~c
|ΦX(0)|2

∫
dqz
2π

1√
Q2 + q2

z

δ(EX +
~2Q2

2mX

− ~c
√
Q2 + q2

z), (2.26)

where we converted the summation over qz to integration. Here EX is the exciton’s

energy given by Eg − εbX . In order for the energy conservation delta function to be

satisfied we see that the exciton’s centre of mass wave vector has an upper bound given

by,

Q <
EX
~c

. (2.27)

This restriction known as the light cone (as it gives a cone shape in momentum space)

comes from the momentum and energy conservation condition for the in–plane mo-

mentum carried by the emitted photon. Therefore, excitons with a wave vector outside

the light-cone cannot recombine radiatively and are optically inactive [52]. Using a

typical exciton energy of ∼ 2 eV, we get Q < 0.01 nm−1, which translates to a kinetic

energy of ~2Q2/(2mX) ∼ 5 µeV. Due to the small exciton wave vector as compared

to the BZ, or the kinetic energy as compared to the exciton energy, the radiative

transition can be taken as vertical, i.e. the photon carries zero in-plane momentum.

Eq. 2.26 then simplifies to

τ−1 =
8π

~
e2

~c
γ2|ΦX(0)|2

EX
. (2.28)

This gives an intrinsic exciton radiative lifetime of τ ∼ 0.1 − 0.2 ps for the four free

standing monolayer TMDCs. Similar values are reported in [52, 53]. This is compared

to measured radiative lifetimes of ∼ 2 ps at T = 7 K for MoSe2 and WS2 [54].

Finally, in Fig. 2.7 we show the various excitons configurations formed from the

electrons and holes at the K and K ′ valleys in MoX2 and WX2 TMDCs [55, 23]
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Figure 2.7: Excitons configurations in MoX2 (left) and WX2 (right) with indication of
optical activity with grey (dark) and yellow (bright). Additional configuration with
the same optical activity is obtained by time reversal of the configurations shown
taking K → −K.

with different choices of out-of-plane spin projections. In particular, the optically

inactive excitonic states (grey) are dark due to either spin or valley mismatch, as

dictated by the optical selection rules in Eq. 2.9. The dark excitons due to valley

(momentum) mismatch can become bright with the assistance of additional carriers

or through phonon scattering as proposed in [38]. The spin-mismatched dark excitons

can become bright through spin-flip processes as proposed in [35].

As obtained in section 2.5, the opposite ordering of the spin–split CB in the Mo

based and W based TMDCs results in the ground state exciton in MoX2 to be bright,

whereas in WX2 to be dark. The excited state excitons involving the upper spin

split band has the opposite dark/bright classification in the two types of TMDCs. In

thermal equilibrium the excited exciton state population will be suppressed by the

Boltzmann factor ∝ e
− ∆so
kBT , resulting in weaker intensity in the PL spectrum at low

temperatures as compared to the spin orbit splitting, however the intensity increases

at higher temperatures when the upper spin-splits bands are populated [56, 57, 23].

2.7.2 Trions

The trions (negatively or positively charged excitons) can be viewed as an electron

bound to an exciton, described in second quantization (for the negatively charged

exciton) by,

|T 〉 =

∫
d2r1d

2r2d
2rh

eiQ·Rcm

√
S

ΦT (r1, r2, rh)Ψ
†
c,τ1,s1

(r1)Ψ†c,τ2,s2(r2)Ψv,τh,sh(rh)|0〉, (2.29)
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where the centre of mass coordinate is given by Rcm = m1r1+m2r2+mhrh
mT

with mT =

m1+m2+mh the trion mass, and with the envelope function ΦT describing the relative

motion of the carriers given by the solution to a similar equation to Eq. 2.21 with the

Keldysh interaction between each pair of carriers, giving a binding energy of the order

∼ 30 meV [43, 44, 58], with good agreement between theory and experiments. Note

that the trion wave function must be antisymmetric with respect to the exchange of

two electrons, therefore either the spatial or valley/spin indices must be antisymmetric.

The tightly bound ground state trions are found to be composed of the symmetric

envelope function (zero angular momentum state) and having different valley or spin

indices [43, 59].

Figure 2.8: Tightly bound trions in MoX2 and WX2. Yellow(grey) configurations
indicate bright(dark) trions.

Similarly to the excitons, the trion states with electron and hole in the same valley

with opposite spin projections in the CB and VB are optically inactive due to spin

conservation, and configurations with the second electron residing in an opposite valley

cannot recombine with the hole due to the large momentum transfer involved, as

shown in Fig. 2.8, [23]. The radiative rate is evaluated in a similar manner, however

an important difference compared to the exciton case is the final state consisting

of a photon and an electron, as opposed to only a photon in the exciton case. The

implication is that the trion is not limited by a light cone for the centre of mass motion,

as the final state electron can take the centre of mass momentum of the initial state

trion emitting a photon with negligible in-plane wave vector. The energy conservation

for the trion radiative recombination is given by

ET +
h2Q2

2mT

= ~ω +
~2Q2

2me

, (2.30)
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where ET is the trion energy with zero centre of mass momentum. Assuming the

trions to be in thermal equilibrium, the trion kinetic energy can be approximated by

the thermal energy as ~2Q2

2mT
≈ kBT , such that the resulting photon energy is given by,

~ω = ET −
mX

me

kBT. (2.31)

The second term on the right is called the recoil energy, and results in the photon’s

energy to be red-shifted due to the remaining electron kinetic energy [60, 22]. A

further implication of the recoil energy is in the resulting PL line shape. For a thermal

distribution of trions we have for the line shape [61],

I(~ω) ∝
∫
d2Qe

− ~2Q2

2mT kBT |M |2δ(~ω − ET +
mX

me

~2Q2

2mT

) ∝ |M |2e−
~ω−ET
kBT

me
mX Θ(~ω − ET ),

(2.32)

where M is the radiative matrix element, and Θ is the Heaviside function. Therefore,

the resulting line shape is antisymmetric with a cut-off at the intrinsic trion energy

and a tail towards lower energy determined by the temperature [60]. Finally, the

temperature dependent PL intensity of the different lines in equilibrium is weighted

by the Boltzmann factor with the energy of the relevant line, such that the ground

state trion in MoX2 does not require an activation. However the bright trion in WX2

is weighted by the Boltzmann factor ∝ e
−∆SO
kBT . The excited bright complexes in WX2

consisting of both electrons in the upper spin-orbit split bands are suppressed by

the factor ∝ e
− 2∆SO

kBT , resulting in strong suppression of the line’s intensity at low

temperatures compared to the spin-orbit splitting in the CB [23].

2.7.3 Biexcitons

Biexcitons consist of two excitons bound to each other, and are described in second

quantization in a similar way to the excitons and trions by,

|B〉 =

∫
d2red

2re′d
2rhd

2rh′
eiQ·Rcm

√
S

ΦB(re, re′ , rh, rh′)

×Ψ†c,τe,se(re)Ψ
†
c,τe′ ,se′

(re′)Ψv,τh,sh(rh)Ψv,τh′ ,sh′ (rh′)|0〉,
(2.33)

with the centre of mass coordinate given by Rcm =
reme+re′me′+rhmh+rh′mh′

mB
, and mB =

me+me′+mh+mh′ is the biexciton mass, and ΦB is the relative motion wave function

for the four carriers. The theoretically calculated binding energies of biexcitons in
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TMDCs are of the order of ∼ 20 meV [43, 58], making these complexes observable

even close to room temperature.

Figure 2.9: Tightly bound biexcitons in MoX2 and WX2. Yellow(grey) configurations
indicate bright(dark) biexcitons.

In Fig. 2.9 we show the biexcitons configurations for MX2 and WX2 classified as

dark or bright according to the optical selection rules [23]. Two additional config-

urations can be obtained by time reversal, having the same optical properties. The

presence of two excitons implies that in the configuration where the two excitons are

in different valleys and satisfy the optical selection rules, both excitons can recombine,

doubling the radiative rate.

The radiative decay of a biexciton leaves a free exciton in the final state. Therefore,

similarly to the trion case, the emitted photon energy is reduced by the recoil energy

of the remaining exciton,

~ω = EB − kBT, (2.34)

where EB is the intrinsic biexciton energy. The resulting PL line shape is therefore

asymmetric with a tail towards lower energies.

2.8 Heterobilayers of TMDCs

Heterobilayers of 2D TMDCs are formed by stacking two different TMDCs on top

of each other. The two monolayers are coupled by weak van der Waals interaction

allowing the two monolayers to retain their favourable optoelectronic properties. It

was found that the combination of particular pairs among the four common TMDCs

discussed thus far, MoS2,MoSe2,WS2 and WSe2, into heterobilayers result in a partic-

ular band alignment known as a type-II band alignment [62, 63, 64]. In such a band
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alignment, the conduction band minimum belongs to one layer and the valence band

maximum belongs to the other layer, such that the electrons are localized on one layer

and the holes are localized on the other, Fig. 2.10.
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Figure 2.10: Schematic demonstration of type–II band alignment of Molybdenum and
Tungsten based TMDCs heterobilayer, showing the conduction and valence band edges
of the two monolayers, and the interlayer exciton X ′ composed of electron and hole
localized on opposite layers. Figure adapted from [24].

The Coulomb interaction between the electrons and holes in the two layers results in

the formation of interlayer bound complexes, the simplest being an interlayer exciton.

The energy of these interlayer complexes as revealed in photoluminescence experiments

[65], depends on the interlayer band gap, being smaller than the band gap in the

individual monolayers, as well as the complex’s binding energy, which is reduced as

compared to the monolayer, due to the separation in real space between the carriers.

An additional consequence of the stacking of heterobilayers of TMDCs on the opti-

cal and electronic properties of these systems, has to do with the real space alignment

and incommensurability of the two monolayers. In particular, the lattice constants

of the four TMDCs are not exactly the same, and can differ by as much as 4% [27].

These real space differences translate directly into reciprocal space where the BZ of

the two monolayers have different sizes and are rotated with respect to each other.

The electrons and holes in each layer, found in the vicinity of the K valleys of the

respective layers, are therefore separated from each other in reciprocal space by the

wave vector ∆K (Fig. 2.11b) given by [66, 24]

∆K = KMoX2

√
δ2 + θ2; δ = 1− aMoX2

aWX2

, (2.35)
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where δ is the lattice mismatch and θ is the twist angle. As direct radiative recombi-

nation requires the electron and hole to have the same crystal momentum, the direct

recombination is suppressed in incommensurate and twisted heterobilayer TMDCs due

to momentum and energy conservation.

The interlayer exciton composed of the electron and hole localized on the opposite

layers has a dispersion of the form,

EX′ = Ẽg − εbX̃ +
~2(Q−∆K)2

2MX̃

, (2.36)

where εb
X̃

is the exciton binding energy, and the exciton centre of mass momentum

is given by Q = ke + kh, measured relative to a common point (K point in WX2).

In particular, the dispersion minima corresponding to both carriers in their respective

valleys is found at a finite Q, preventing the direct radiative recombination (Fig. 2.11c).

As the light cone position found at Q = 0, the interlayer exciton therefore has a finite

kinetic energy given by E(Q = 0) = ~2∆K2

2MX̃
, [67].
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Figure 2.11: (a) Heterobilayer of twisted monolayers in real space with a twist angle
θ. (b) Rotated Brillouin zones of the two monolayers with the first circle of reciprocal
lattice vectors of the two rotated monolayer, G,G′. The electron and hole are found
at the τ (′)K(′) valleys (τ = ±) of the two layers separated by a wave vector ∆K. (c)
The interlayer exciton X̃ dispersion, as a function of the centre of mass momentum Q.

The optical properties of the heterobilayer system and the interlayer complexes

depend crucially on the coupling between the layers [68]. The Bloch state on a given

layer in band n, with wave vector k measured relative to valley τK, can be written

as a linear combination of the atomic orbitals localized on the atomic positions with
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appropriate phases, in accordance with Bloch’s theorem

Ψn,k(′)(r) =
1√
N (′)

∑

R(′)

φn(r−R)ei(τ
(′)K(′)+k(′))·R(′)

, (2.37)

where R(′) are the lattice vectors, N (′) is the number of unit cells, and φn(′)(r−R(′))

is the orbital corresponding to band n(′) localized on the lattice site R(′), in the

top(bottom) layer. Given two incommensurate layers with reciprocal wave vectors

G,G′, respectively, the hopping amplitude between two Bloch states is given by the

matrix element of the interlayer coupling Hamiltonian Ĥt, which is treated as a per-

turbation to the eigenstates of the two monolayers [66, 69],

Tn,n′ = 〈n,k|Ĥt|n′,k′〉 =
∑

G,G′

δτK+k+G,τ ′K′+k′+G′tnn′(τK + k + G),

tnn′(q) =
1√
AA′

∫
t̃nn′(r)eiq·rd2r; t̃nn′(R

′ −R) = 〈φn,R|Ĥt|φn′,R′〉,
(2.38)

where A,A′ are the unit cells of the two layers, respectively. The main quantity

determining the coupling in Eq. 2.38 is tnn′(k), which is the Fourier component of

the overlap between the orbitals making up the bands, localized on two lattice sites

separated by the in–plane position vector r. The Kronecker delta function appearing

in the sum, ensures momentum conservation in the tunnelling process between the

layers. As the crystal momentum is defined up to a reciprocal lattice vectors, we

have a summation over the reciprocal lattice vectors of the two layers. The hopping

integral t̃nn′ being a smooth function of the orbitals’ distance implies that t(q) decays

rapidly for increasing values of the reciprocal lattice vectors [66], and can therefore be

restricted to the first set of reciprocal lattice vectors in the two layers.

For aligned and commensurate (∆K ∼ 0) layers there are three contributions from

the three equivalent K points, which are related by a C3 symmetry operation, giving

for the tunnelling amplitudes [66, 69],

Tn,n′ = tnn′(K) + tnn′(Ĉ3K) + tnn′(Ĉ
2
3K) =

[
1 + ei

2π
3

(mn′−mn) + ei
4π
3

(mn′−mn)
]
tnn′ ,

(2.39)

where in the second equality we used the fact that the states in the CB and VB states

are eigenstates of C3 symmetry operation 2.1. For an AA-stacking corresponding to

the second layer simply displaced in the out of plane direction, this gives for the
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tunnelling amplitudes between the different bands at the K–valley (with values for

the −K valley obtained by time reversal) [66, 69],

Tcc′ = 3tcc′ ,

Tvv′ = 3tvv′ ,

Tcv′ = Tvc′ = 0.

(2.40)

The other common stacking is 2H (or AB), in which the second layer displaced in the

out of plane direction, is further rotated by 180◦ relative to the centre of the hexagon.

In such a stacking, the tunnelling takes place between states in the K valley in one

layer to states in the −K valley in the other, giving using Eq. 2.39 [66, 69],

Tcc′ = 0,

Tvv′ = 3tvv′ ,

Tcv′ = Tvc′ = 0,

(2.41)

such that for this stacking the K–point conduction bands are decoupled.



Chapter 3

Kinetics of electrons and holes in

TMDCs

3.1 Introduction

The radiative recombination process following the excitation of electron-hole pairs to

energy above the bottom of the conduction band, requires the relaxation of the hot-

carriers into the minimum of the respective conduction and valence bands, at which

point the electrons and holes bind into excitons, which can recombine radiatively and

emit light. The relaxation time of the carriers and the understanding of the relaxation

processes is therefore of importance for the optical response of these materials and

their performance in potential optoelectronic device applications. The most common

path of energy relaxation in semiconductors is through dissipation of the energy into

lattice vibrations in the form of phonons, and particularly optical phonons with a finite

energy at the Γ-point (q = 0). TMDCs being polar materials results in an electron-

phonon coupling due to the electrostatic potential induced by the longitudinal optical

(LO) phonon. The modified dielectric function in 2D, ε(q) = 1 + r∗q, however, calls

for a modification to the 3D Fröhlich coupling having the form ∝ 1/q . In the work

presented in 3.2 we obtain the modified coupling for 2D materials having a finite

coupling at q = 0, with the coupling strength determined by the Born effective charge

of the metal and chalcogen (See also Appendix A for a more detailed derivation).

This results in relaxation times of order sub-picoseconds to picoseconds for the four

TMDCs.

39
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In parallel to the relaxation process, non-radiative processes can hinder the effi-

ciency of the radiative recombination process, by transferring the energy from the re-

combination to an additional carrier as opposed to emission of a photon. Following the

carrier relaxation and formation of bound electron-hole pairs (excitons), the excitonic

complexes can either recombine radiatively and emit light or decay into free carriers

through non-radiative processes. The efficiency of optoelectronic devices depends on

the competition between the radiative and non-radiative processes. The observed ef-

ficiency of photoluminescence experiments in TMDCs was found to be ∼ 1 − 10%.

This low efficiency is surprising considering the direct band gap nature, strong light-

matter coupling, and in particular the reduced phase space for scattering in Auger

type processes due to the two dimensional nature of the materials, which due to both

momentum and energy conservation constrain the final allowed momentum state, re-

quiring a near resonance condition for the process to take place. This therefore calls for

a specific process that can quench the emission of light in these materials. In the work

presented in 3.3 we propose a non-radiative (Auger) recombination process in WS2

and WSe2 where the opposite ordering of the spin-orbit splitting in the conduction

and valence bands makes the ground state excitons dark, leading to a bottleneck in

the low temperature radiative recombination. By comparing the non-radiative rate to

a corresponding radiative process, we estimated the relative importance of the Auger

process. We find that the non-radiative process can dominate over the corresponding

radiative process for relatively low carrier densities < 1011 cm−2, therefore providing

a possible quenching mechanism for light emission in these materials, explaining the

observed low quantum efficiencies.

3.2 Fast relaxation of photo-excited carriers in 2D

transition metal dichalcogenides

The results presented in this section are reported in the publication [21]: “Fast Re-

laxation of Photo-Excited Carriers in 2-D Transition Metal Dichalcogenides” in IEEE

Journal of Selected Topics in Quantum Electronics, vol. 23, no. 1, pp. 168-172, Jan.-

Feb. 2017. c© 2017 IEEE. Reprinted, with permission.

My contribution to this work: Performed all the relaxation rates calculations, prepared



3.2. FAST RELAXATION OF PHOTO-EXCITED CARRIERS 41

figures, analysed the results and written the manuscript.

Full author list: M. Danovich, I. L. Aleiner, N. D. Drummond, V. I. Fal’ko.

Author contributions: N.D. performed the DFT calculations to obtain the Born effec-

tive charges. All authors contributed to the writing of the paper.
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Fast Relaxation of Photo-Excited Carriers in
2-D Transition Metal Dichalcogenides

Mark Danovich, Igor L. Aleiner, Neil D. Drummond, and Vladimir I. Fal’ko

Abstract—We predict a fast relaxation of photo-excited car-
riers in monolayer transition metal dichalcogenides, which is
mediated by the emission of longitudinal optical (LO) and ho-
mopolar (HP) phonons. By evaluating Born effective charges for
MoS2 , MoSe2 , WS2 , and WSe2 , we find that, due to the polar
coupling of electrons with LO phonons, and the HP phonons lattice
deformation potential, the cooling times for hot electrons and holes
from excitation energies of several hundred meV are at ps-scale.

Index Terms—TMDCs, optoelectronics, ultrafast relaxation.

I. INTRODUCTION

MONOLAYER transition metal dichalcogenides
(TMDCs) offer a unique possibility to create nm-thin

optoelectronic devices [1]–[9], in particular when used in van
der Waals heterostructures with other two-dimensional (2D)
crystals [10]. The optoelectronic functionality of TMDCs
is determined by their high-efficiency optical absorption in
the visible optical range [11] as well as the fact that their
monolayers are direct-band-gap 2D materials. Because of their
promise for optoelectronics, it is important to understand the
process of cooling (energy relaxation) of photo-excited carriers
in TMDCs. In this paper we show that photo-excited carriers
can emit Γ-point optical phonons at a sub-ps time scale. Such
a high speed of relaxation of electrons and holes excited to
energies > 150meV above the band edge arises from polar
coupling to the longitudinal optical (LO) phonons, and the
deformation potential induced by the out of plane homopolar
(HP) phonon mode. In the theory reported in this Letter, we
analyze the phonon-mediated cooling of hot electrons/holes in
TMDCs, taking into account two phonon modes coupled to
the intra-band intra-valley relaxation processes: the in-plane
LO phonon and the out of plane HP vibrational mode [12].
Density functional theory (DFT) modeling produces electron
(hole) couplings to the corner of the Brillouin zone (K-point)
phonons, which are weaker by at least an order of magnitude
[13]–[17]. We also note that advance DFT methods have shown
that the energy difference between the Q and K valleys in

Manuscript received March 29, 2016; revised May 12, 2016; accepted June
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Grant Hetero2D and the EC-FET European Graphene Flagship.
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Fig. 1. Sketch of the energy relaxation of photo-excited carriers in the valence
(v) and conduction (c) bands of TMDCs through phonon emission. The use of
the parabolic approximation in the description of electron and hole dispersion in
each valley (K or K ′) sets a constraint, E ≤ 0.25 eV on the excitation energies
of the charge carriers. The insets show side view of the atomic displacements in
the LO and HP modes.

the conduction band in MoS2 and MoSe2 are large enough to
exclude K → Q scattering from our considerations [15], [18].

II. CARRIER-PHONON INTERACTION

The carrier-phonon interaction in TMDCs is given by the
Hamiltonian

He−ph =
∑

�q ,�k
μ = L O , H P

gμ,�q c
†
�k+�q

c�k (a†
μ,−�q + aμ,�q ), (1)

where c†
�k

(c�k ) are the creation (annihilation) operators for a
charge carrier (electron or hole) in the vicinity of one of the
valleys, (K or K ′), near the corners of the hexagonal Brillouin
zone of the 2D crystal [19], [20], with �k measured from the val-
ley center (see Fig. 1). The operators a†

μ,�q (aμ,�q ) are the phonon
creation (annihilation) operators for mode μ = LO or HP with
wavevector �q, where |q| � |K|. The two phonon modes1 ac-
counted for in the relaxation process are shown in Fig. 1.

The LO mode, which corresponds to the irreducible repre-
sentation E ′ of the symmetry group D3h of the crystal, couples
to the charge carriers through the polarization induced by the
lattice deformation, �P = Ze

A �u, where Z is the Born charge, �u
is the relative displacement of the two sublattices in the LO
vibration, A is the unit cell area, and e is the electron charge.

To estimate the Born charge we used DFT [22] to calculate the
Born effective charges of the atoms in the lattice of monolayer

1TMDCs have six optical modes denoted by the irreducible representations of
the point group D3h (A′

1 , A′′
2 , E ′, E ′′), and three acoustical modes denoted by

LA, TA, and ZA, where LA and TA are the in-plane longitudinal and transverse
modes, and ZA is the out-of-plane mode. We neglect the transverse optical and
acoustical modes due to their weak coupling at the Γ point, q → 0.

1077-260X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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TABLE I
TMDC PARAMETERS USED IN THE MODELLING

OF THE PHONON EMISSION RATES

MoS2 MoSe2 WS2 WSe2

m c
m 0

Ref. [11] 0.46 0.56 0.26 0.28
m v
m 0

Ref. [11] 0.54 0.59 0.35 0.36

A [Å
2
] Ref. [11] 8.65 9.37 8.65 9.37

M r
m p

38.4 59.7 47.5 85.0
M

m p
160 254 248 342

� ωL O [meV] Ref. [13] 49 37 44 31

� ωH P [meV] Ref. [13] 51 30 52 31

Dc [eV/Å] Ref. [13] 5.8 5.2 3.1 2.3

Dv [eV/Å] Ref. [13] 4.6 4.9 2.3 3.1

Z −1.08 −1.80 −0.47 −1.08

r∗ [Å ] Ref. [21] 41 52 38 45

TMDCs. The latter are defined by the response of the atomic
displacements in a unit cell to a homogeneous electric field.
Hence, we write

Z ≡ Zxx = Zyy ; Zij =
1

e

∂Fj (s)

∂Ei

∣∣∣∣
E=0

, (2)

where F(s) is the force acting on atom s at its zero-field
equilibrium position. We used the CASTEP plane-wave basis
code [23], [24] to calculate the Born effective charge tensors
for MoS2 ,MoSe2 ,WS2 , and WSe2 ;2 see Table I. We used
the Perdew–Burke–Ernzerhof [27] exchange–correlation func-
tional, norm-conserving pseudopotentials, a plane-wave cutoff
energy of ∼ 816 eV, a 97 × 97 Monkhorst–Pack grid of k-
points, and (for the in-plane components of the Born effective
charge tensors) an artificial (out-of-plane) periodicity of ∼ 16 Å.
We verified that our results are converged with respect to these
parameters. For the out-of-plane component we found a signifi-
cant dependence on the artificial periodicity, which we removed
by extrapolating to infinite layer separation.

The LO phonon coupling (the same for electrons and holes)
is given by,3

gLO =
i

A

√
�

2NMrωLO

2πZe2

1 + qr∗
, (3)

where N is the number of unit cells, Mr is the reduced mass of
the two sublattices, and ωLO is the LO phonon frequency. The

2Note that Eq. (2) is evaluated using Eqs. (40) and (42) of Ref. [25]. To
evaluate Eq. (42) of Ref. [25], derivatives of the Kohn–Sham orbitals with
respect to the atomic positions and with respect to the wavevector are required.
The latter are evaluated within the parallel-transport gauge by minimizing the
functional in Eq. (70) of Ref. [26].

3Starting from the electrostatic interaction energy in 2D, E =
1
2

∫
d2 �r d2 �r ′
|�r−�r ′ | σ(�r)σ(�r′) + 1

2κ

∫
d2�r(P 2

⊥ + P 2
op ), with σ(�r) = eρ(�r) − ∇ ·

�Pop (�r) − ∇ · �P⊥(�r), where ρ(r) is the 2D carrier density, �Pop is the opti-
cal phonon induced polarization, �P⊥ is the remaining in-plane polarization, and
κ is the in-plane rigidity. Assuming the adiabatic approximation, we Fourier
transform the integrand, and integrate out P⊥, we obtain the dielectric screen-
ing 1/(1 + 2πκq), from which we define the screening length as r∗ = 2πκ,
and the carrier-phonon coupling is obtained from the term containing ρ∗

q
�Pop ,q ,

which are the Fourier components of the electron density and the optical phonon
induced polarization vector.

TABLE II
VALUES OF DERIVED AND FITTED PARAMETERS IN EQS. (5) AND (6)

MoS2 MoSe2 WS2 WSe2

kc [Å
−1

] 0.077 0.074 0.055 0.048

kv [Å
−1

] 0.083 0.076 0.064 0.054

τ −1
c [ps−1 ] 112 296 11 45

τ −1
v [ps−1 ] 130 312 14 58

τH P , c
−1 [ps−1 ] 6.8 7.7 0.69 0.54

τH P , v
−1 [ps−1 ] 5.0 7.2 0.5 1.3

ac [ p s
m eV ] 2.3 · 10−3 3.9 · 10−3 0.029 0.017

bc [ p s√
m eV

] 0.012 0.033 0.24 0.17

cc [ps] 0.14 0.15 1.27 0.70

av [ p s
m eV ] 2.7 · 10−3 2.6 · 10−3 0.023 0.012

bv [ p s√
m eV

] 0.017 0.018 0.18 0.10

cv [ps] 0.15 0.10 1.03 0.45

Fig. 2. Dimensionless function f (kc (v )r∗) in Eq. (5a) for different carrier
energies, Ec (v )/� ωLO = 1.1, 3 and 5. The inset sketches the kinematics for
the phonon emission process in momentum space for the carrier undergoing
energy relaxation with initial state wavevector ki and final-state wavevector kf .
The circle with radius 1/r∗ defines the region of phonon wavevectors q that
give the dominant contribution to the scattering rate. As the number of available
final states scales as the circumference of the iso-energy circle in momentum
space, for a given r∗ the asymptotic behavior of the scattering rate for high
carrier energies is given by τ ∼ 1/ki ∝ 1/

√
E .

dielectric screening of the electric field of LO mode deforma-
tions is described [3], [28] by the factor 1/(1 + qr∗), where r∗
is a length scale defined by r∗ = az (ε|| − 1)/2, where az and
ε|| are the z-axis lattice constant and in-plane dielectric constant
of a bulk crystal of the corresponding TMDC [21], [28]. The
values used for the screening lengths are taken from the DFT
calculated 2D polarizabilities in Ref. [21].

The HP mode (which corresponds to the irreducible represen-
tation A′

1 of the symmetry group D3h ) couples with the carriers
through the lattice deformation potential4

gα
HP =

√
�

2NMωHP
Dα, α = c or v, (4)

where M is the total atomic mass within the unit cell, ωHP is
the HP phonon frequency, and we distinguish electrons in the
conduction band (c) and holes in the valence band (v). Here

4For the LO/TO mode at the Γ-point, the pseudo-potential induced by the
atomic displacements, which is a scalar function, will contain the factor ∇ · �u.
Hence, it would appear in the power-law expansion together with the wavevector
�q of the phonon, and will vanish at the Γ-point. For the LO phonon mode, this
factor q is canceled by the 1/q factor coming from the 2D Fourier transform of
the Coulomb potential, resulting in a finite contribution at the Γ-point in Eq. (3).
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Fig. 3. Hot carrier cooling time as a function of initial conduction-band (Left) and valence-band (Right) carrier energy E for four TMDC materials. The dashed
lines are asymptotic fits of the form in Eq. (6c).

we follow the definitions given in Refs. [13], [14], [18] for the
coupling and, below, we use the deformation potentials for the
HP phonon mode reported in Ref. [13].

III. SCATTERING RATES

The emission of both LO and HP phonons by a photo-excited
electron/hole with initial momentum ki measured from the cen-
ter of the corresponding (K or K ′) valley, is characterized by
the rate calculated using the Fermi golden rule

τ−1 =
2π

�
∑

�q ,μ

|〈f |He−ph |i〉|2δ(Ef − Ei).

This yields

τ−1
LO ,α = τ−1

α f

(
Eα

� ωLO
, kαr∗

)
, α = c or v

τ−1
α =

2π2Z2EB

�
mα

Mr

a2
B

A

EB

� ωLO
;

f =
1

π

kα

ki

∫ u+

u−

du

(1 + ukαr∗)2
√

1 − [ kα

2ki
(u + 1

u )]2
;

(5a)

u± =
ki

kα

(
1 ±

√
1 − k2

α

k2
i

)
; kα =

√
2mαωLO

�
;

τ−1
HP ,α =

mαAD2
α

2M�2ωHP
. (5b)

Note that these scattering rates are valid only for carrier en-
ergies above the corresponding optical phonon energy. Further-
more, the rate of emission of the HP phonon is independent
of the carrier energy, due to the constant coupling coefficient
and the constant density of states for 2D carriers with parabolic
dispersion. For the LO phonon mode we express the scattering
rate in terms of a dimensionless integral by performing a change
of variables, defining the dimensionless variable u = q/kc(v ) ,
where kc(v ) is the carrier wavevector corresponding to an en-
ergy of � ωLO , and aB and EB are the Bohr radius and energy.
In Table II we list the values of the parameter τ−1

c(v ) for various

TMDCs, and in Fig. 2 we show the shape of the function f for
different carrier energies Ec(v ) . The decrease of this scattering
rate upon increasing r∗ or excitation energy can be understood
from the diagram depicting the kinematic phase space for a
carrier emitting an optical phonon.

Comparing the values of τ−1
c(v) and τ−1

HP ,c(v ) in Eqs. (5a), (5b),
and Table II, we see that emission of the LO phonon mode with
r∗ = 0, dominates in the relaxation over the HP phonon. The two
rates become comparable for sufficiently large carrier energies
or sufficiently large r∗ values. Asymptotically, we have for the
LO phonon, τ−1

LO ∼ 1/(r∗
√

E); therefore, the boundary between

the two modes is given by5 r∗
√

mE
� ∼ 4πZ2 a2

B E 2
B

A 2 D 2
α

M
Mr

ωH P

ωL O
,

where E is the energy of the photo-excited carrier and m is
its band mass.

IV. RELAXATION TIMES

For hot carriers excited to the energy E � � ωLO/HP , we
write the cooling rate as

dE

dt
= − � ωLO

τLO(E)
− � ωHP

τHP
, (6a)

so that we can determine the relaxation time as a function of the
initial carrier energy E as

t(E) =

∫ E

0

dε
� ωL O

τL O (ε) + � ωH P

τH P

. (6b)

For hot carriers excited to the energy E � � ωLO/HP , Eqs. (5a),
(5b) yield τ−1

LO ∝ 1/
√

E (also see Fig. 2) and τ−1
HP is a constant,

so that we find an analytical asymptotic form for the cooling
time of charge carriers from the initial energy E to the bottom
of the band,

t(E) ≈ aE − b
√

E + c. (6c)

The fitted values of the parameters a, b and c for the conduc-
tion and valence bands relaxation times are listed in Table II

5This parameter was derived by equating τ −1
LO ∼ τ −1

HP , and using the
asymptotic form of τ −1

LO for large carrier energies. The corresponding val-
ues are, 13, 18, 15 and 57 for electrons and 20, 21, 27, and 31 for holes in
MoS2 , MoSe2 , WS2 , and WSe2 , respectively.
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and correspond to the numerically obtained [29] relaxation time
curves shown in Fig. 3 for the conduction (c) and valence (v)
bands.

V. CONCLUSION

We calculated the scattering rates and relaxation times of
photo-excited carriers in TMDCs due to optical phonon emis-
sion. We obtained relaxation times of a few ps for all the
materials studied, with MoSe2 and MoS2 having the shortest
sub-ps relaxation times for all carrier energies up to 0.25 eV,
which is determined by their respective unit cell Born charges,
ZMoSe2

= −1.80 and ZMoS2
= −1.08, and respective opti-

cal deformation potentials (Table I). For WS2 and WSe2 ,
we find smaller unit cell Born charges, ZWS2

= −0.47 and
ZWSe2

= −1.08, and smaller HP deformation potentials, re-
sulting in longer relaxation times. However, for these two 2D
materials, an additional channel of K → Q intervalley relax-
ation is possible, due to a smaller Ec

KQ splitting than in Mo-
based dichalcogenides, so that the rates shown in Eq. (5) give
only the lower bound for the speed of relaxation in WS2 and
WSe2 . The Introduction of a dielectric environment through a
substrate or full encapsulation, will have two main effects on
the calculated relaxation times. First, the electric potential in-
duced by the LO phonon will be reduced in the long wavelength
limit by the dielectric constant of the enviorment εe , therefore
reducing the LO phonon coupling by a factor of εe

6. The HP
phonon mode on the other hand will not be affected in such
a way, as its coupling mechanism does not involve an elec-
tric field. Second, carriers in the TMDC monolayer can emit
phonons in the substrate, thus increasing the total scattering
rate. The obtained fast carrier cooling rates and the subsequent
formation of excitons which can radiatively recombine and emit
light, can lead to high quantum efficiencies, crucial for the
range of optoelectronics device applications utilizing TMDCs,
including light emitters, photodetectors, and novel valleytronic
devices.
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Abstract
Wepropose a novel phonon assisted Auger process unique to the electronic band structure of
monolayer transitionmetal dichalcogenides (TMDCs), which dominates the radiative recombination
of ground state excitons in tungsten based TMDCs. Using experimental and density functional theory
computed values for the exciton energies, spin–orbit splittings, opticalmatrix element, and the Auger
matrix elements, wefind that the Auger process begins to dominate at carrier densities as low as

- -10 cm9 10 2, thus providing a plausible explanation for the low quantumefficiencies reported for
thesematerials.

Recently, there was an expansive interest inmonolayer
transition metal dichalcogenides (TMDCs) due to
their potential in optoelectronic applications [1–3]. In
contrast to bulk TMDC crystals, the monolayers of
MoS , MoSe , WS ,2 2 2 and WSe2 are direct band
semiconductors. Contrary to –III V semiconductors,
in these hexagonal 2D crystals the conduction (c) and
valence (v ) bands edges are at the ¢K K points of the
Brillouin zone (BZ) rather than at the Γ-point. Several
experiments have already demonstrated a strong
light–matter interaction in these 2D crystals [4].

Potentially practical implementations of these
TMDC atomic crystals in optoelectronic devices
require high quantum efficiency (defined as the ratio
of emitted to absorbed photons) of the optical process.
The quantum efficiency depends on various external
parameters such as the temperature, sample quality,
excitation power, doping, and the specific material.
However, despite the recent progress in improving the
quality of 2D TMDCs, the quantum efficiencies
observed in photoluminescence experiments [5–9] for
the different materials were: for MoS2, ~ -10 3 [5, 9],
~ -10 4 [8] at room temperature, and for WS2 and
WSe2, ∼10−2 at 10 K [8]. Such systematically low
quantum efficiencies call for finding the mechanism
responsible for the non-radiative recombination of
electron–hole pairs, excitons, or trions. Previous
theoretical and experimental works have suggested
exciton–exciton annihilation [10–15] for exciton den-
sities above ~ -10 cm10 2, exciton capture by defects
[9, 16], and phonon scattering [17] as possible non-

radiative mechanisms for excitons in these materials.
Here, we show that there exists a phonon assisted
Auger recombination process illustrated in figure 1,
which is specific for 2D TMDC semiconductors. By
explicit comparison of the phonon assisted radiative
recombination rate of ground state excitons in mono-
layers of WS2 and WSe2 with the rate due to the sug-
gested Auger mechanism, we find that the latter starts
dominating at electron densities as low as

- -10 cm9 10 2. The specific band structure of 2D
TMDCs defies the common wisdom (based on III–V
semiconductors studies) that the 2D confinement
quenches Auger recombination processes. Namely,
electrons from the vicinity of the conduction band (c)
edge, can undergo a transition into one of the higher
bands ( ¢c infigure 1)which is almost in resonance with
the exciton annihilation. Both c and ¢c bands are com-
prised of d-orbitals of the samemetal atom, facilitating
the Auger transition.

The electron band structure near the corners of the
BZ is described by

ˆ ( ) ( )†  òå= Y -  Y
nst

nst nst nstH rd i , 10
2

where ( )n s= ¢ =   v c c, , , , , and
( )t =  ¢K K, . With reference to the band structure

shown in figure 1, the relevant spectrum of electrons
in the vicinity of the BZ corners can be described using

the effective mass approximation as  = +n nst
n

E k

m2

2 2

.

Here we count energies from the v band edge and
( )ts= - -E 1v

D

2
SO , with <m 0v . For the

OPEN ACCESS

RECEIVED

1 July 2016

REVISED

26 July 2016

ACCEPTED FOR PUBLICATION

2August 2016

PUBLISHED

17 August 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd



conduction bands we use ( )ts= + +DE E 1gc 2
SO ,

and ( )ts= + ¡ - +¢E E2 1g
D

c 2
SO , with <¢m 0c .

Due tomirror plane symmetry (sh) of 2DTMDCs, the
electron spin projection on to the z-axis normal to the
planeσ, is a good quantumnumber. The signs of spin–
orbit splittings in Ec reflect the inverted order of spin-
split states in c and v bands specific to tungsten based
TMDCs [20–22] (in contrast to their molybdenum
counterparts). This results in a ground state exciton/
trion which is dark due to spin and momentum
conservation constraints [23–25], requiring emission
of K-point phonons for recombination. At low
temperatures the bright excitons population will be
small compared to the dark excitons, requiring an
activation of the c band spin–orbit splitting energy
DSO, which results in increased photoluminescense at
higher temperatures as observed in some experi-
ments [23].

To classify suitable options for the radiative and
non-radiative transitions in 2D WS2 and WSe2, we
analyze its symmetry group and write down the
corresponding terms in the Hamiltonian. The point
group of 2D TMDCs is D3h, which is a direct product
group, sÄC v3 h, where sh is the horizontal mirror
reflection. The states belonging to the v, c, and ¢c bands
near the ¢K K -points are composed of the d d,0 2 and

-d 2 metal orbitals which posses  -z z symmetry
[21], and therefore belong to the identity irreducible
representation (IrRep) of sh. As a result, we can focus
on the point groupC3v for the classification of the elec-
tronic states into IrReps, as well as the classification of
phonon modes coupling to the electrons states. Since

the states at the K and ¢K -points are degenerate, it is
advantageous to treat them simultaneously. This is
achieved by tripling the unit cell, resulting in a three
times smaller BZ in which theK and ¢K points are fol-
ded into the Γ-point [26]. Tripling of the unit cell is
achieved by factoring out two translations from the
space group of the crystal resulting in the new point
group  = + +C C tC t Cv v v v3 3 3

2
3 , where t denotes

translation by a lattice vector, and =t 13 . The char-
acter table of the new point group containing 18 ele-
ments and 6 IrReps is given in table 1. In the same table
we list the electron and photon fields corresponding to
the IrReps. The decomposition of the direct products
of IrReps is shown in table 2.

Using table 1 one can write down the Hamiltonian
for the interaction of the electronswith light [27, 28],

Figure 1. (a)DFT (PBE [18]) calculated [19] band structure of WS2 and WSe2. The conduction (c), valence (v ), and higher conduction
band (c’) are labeled by the irreducible representations of the C v3 point group (see text). The spin–orbit splittings in the three bands are
labeled as well. (b) Sketch of the electronic band structure near the ¢K K points, and schematics of the phonon assisted Auger
processes involving an exciton and a free electron. The dashed gray line corresponds to the virtual transition. The three bands are
further labeled by themetal atomorbital which dominantly contributes to the electronic states at the ¢K K points in the BZ.

Table 1.Character table for the irreducible representations (IrRep)
of the extended point group C v3 , and their correspondence to the
relevant fermionic and bosonic fields, and dark excitons.

C v3 E t t, 2 2C3 s9 v 2tC3 t C2 2
3

A1 1 1 1 1 1 1

A2 1 1 1 −1 1 1

E 2 2 −1 0 −1 −1 ( ) ,x y ,

intravalley

XE

¢E1 2 −1 −1 0 2 −1 Yc

¢E2 2 −1 2 0 −1 −1 Yv

¢E3 2 −1 −1 0 −1 2 Y ¢c , inter-

valley ¢XE3

Dxy 12 0 0 0 −3 −3 Phonons

Dz 3 0 0 1 3 0 b

2
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( )
( )

†
 òå t= Y Y + +

s t
st stH

e v

E
rd i h.c.,

2

r
g

c v x y
,

2

where e is the electron charge, v is the velocity
originating from the off-diagonal momentum matrix
element, and


 is the electric field of light. We note

that for the excitons,
( ) ( ) ( ) ( )† †    

fY Y  -r r X R r rc v1 2 1 2 , where

R is the cen-

ter-of-mass position of the exciton, and ( ) 
f -r r1 2 is

the electron and hole relative motion wavefunction.
All possible states of the exciton boson operator X, can
be further classified according to the IrReps. The dark
and bright excitonic states transform according to the
direct product representation of the c and v band states
¢ Ä ¢ = Å ¢E E E E1 2 3. The excitons can further be

classified according to the spin projection Sz. Due to
conservation of spin, the bright state must have
Sz=0, which corresponds to the excited state trans-
forming according to the E IrRep, and only such a
combination enters into equation (2). The
( )¢ =E S, 0z3 states are the intervalley excitons that are
dark due to themomentummismatch.However, these
states can radiatively recombine with the help of
phonon emission. According to table 2, this can be
provided by phonons from ¢E1 and ¢E2 IrReps. The
other exciton doublets, ( ∣ ∣ )=E S, 1z and
( ∣ ∣ )¢ =E S, 1z3 , are absolutely dark due to spin con-
servation (sh reflection changes the sign of the spin
projection Sz). According to the sign of the spin–orbit
splitting in the c band (see text after equation (1)),
( )¢ =E S, 0z3 and ( ∣ ∣ )=E S, 1z are the exciton ground
states. Therefore, the decay of these states is the
bottleneck for the PL. In this case the PL quantum
efficiency is determined by the ratio of the radiative
and non-radiative Auger rates.

The Auger process is caused by the electron–elec-
tron scattering with momentum transfer of the order
of inverse lattice constant, therefore in the effective
mass approximation it is described by a contact inter-
action. Table 2 shows that the only combination
allowed by symmetry is

( )
( )

† † 
òåa

= Y Y Y Y +
s t

s s s s t
¢

¢- -H
m

rd h.c..

3

c
c

v c c c r

2

,

2

Here, α is a dimensionless parameter computed from
the matrix element of the Coulomb interaction in the
basis of the density functional theory (DFT)wavefunc-
tions (see table 3). Also, the only allowedAuger process

involves all carriers in the same valley3. This implies
that at low temperatures due to the exclusion princi-
ple, the additional electron must come through
phonon emission from the opposite valley.

According to table 2, the initial dark state exciton
( )¢ =E S, 0z3 and the electron ( )¢E1 direct product does
not include the final state ¢c state ¢E3, making the direct
process impossible, hence requiring an extra phonon
in the final state. Using table 2, one finds that this addi-
tional phonon in the final state should be the same sh

symmetric ( ¢E1 or ¢E2) as involved in the radiative pro-
cess, allowing the direct comparison of the radiative
and Auger rates without relying on the knowledge of
the strength of the electron–phonon interaction con-
stants4. To consider the electron–phonon interaction
only on symmetry grounds, we list in table 1 the repre-
sentations corresponding to the in-plane Dxy, and out
of planeDzmodes in the tripled unit cell, which is nee-
ded to describe all sh symmetric phononmodes in the
Γ and K points. From the decomposition

= Å ¢ Å ¢ Å ¢D E E E E2 2xy 1 2 3 and = Å ¢D A Ez 1 1 , we
conclude that the existence and number ofmodes nee-
ded to facilitate the processes described are protected
by symmetry. To mention, in our earlier studies[29]
we noticed that the coupling of c band electrons with
the homopolar phonon mode A1 is very strong, which
hints that the ¢E1 mode of Dz, would be the most rele-
vant for the process.

The Hamiltonian describing the ¢E1 phonon and
its interactionwith the c band electrons

( ) ( )

( )
( )

†

† †

  



 ò

ò

å

å

w=

+ Y Y +

t
t t

s t
st s t t-

H rb r b r

g r b

d

d h.c. ,
4

c c

ph
2

,

2

where b(r) is the phonon operator in mode ¢E1 with
energy w, and g is the coupling coefficient. The rates
were calculated using the Fermi Golden rule applied to
the Feynman amplitudes shown in figure 2. The

Table 2.Product table for the irreducible representations of the extended point group C v3 .

C v3 A1 A2 E ¢E1 ¢E2 ¢E3

A1 A1 A2 E ¢E1 ¢E2 ¢E3

A2 A2 A1 E ¢E1 ¢E2 ¢E3

E E E Å ÅA A E1 2 ¢ Å ¢E E2 3 ¢ Å ¢E E1 3 ¢ Å ¢E E1 2

¢E1 ¢E1 ¢E1 ¢ Å ¢E E2 3 Å Å ¢A A E1 2 1 Å ¢E E3 Å ¢E E2

¢E2 ¢E2 ¢E2 ¢ Å ¢E E1 3 Å ¢E E3 Å Å ¢A A E1 2 2 Å ¢E E1

¢E3 ¢E3 ¢E3 ¢ Å ¢E E1 2 Å ¢E E2 Å ¢E E1 Å Å ¢A A E1 2 3

3
The initial state consisting of two electrons in the c band has the

decomposition ¢ Ä ¢ = Å Å ¢E E A A E1 1 1 2 1 , and the final state with
one electron in the v band and the other electron in the ¢c band
transform according to ¢ Ä ¢ = Å ¢E E E E2 3 1 . The common IrRep is
¢E1 which corresponds to the states with both initial and final state

carriers residing in the same valley.
4
The process involving the emission of an ¢E2 phononmode, which

couples to the hole, involves the hole scattering into the lower spin-
split v band which results in the appearance of the large DSO spin–
orbit splitting in the denominator of the rates. Therefore, we neglect
the contribution of the ¢E2 phonon assisted process to the total rates.

3
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radiative rate (with photon line shifted down by w
from the dark exciton energy) is given by

∣ ( )∣
( ) ( )

  t
f

w
=

D +¢

⎜ ⎟⎛
⎝

⎞
⎠

E e

c

v

c

g1 8

3

0
5

X

g

r,

2 2 2 2

SO
2

E3

and the non-radiative rates by

∣ ∣
∣ ( )∣

[ ] ( )



t
a f

w x
=

D + +¢

E n

m E

g1 0
, 6

X

g

c g XA,

2
e

2 2 2

SO
2

where ne is the electron density, and ∣ ∣
∣ ∣x = U

+
¢

X
m

m m
c

v c

for = ¢X XE3
, and ∣ ∣x = ¡¢

X
m

m
c

c
for =X XE.

5

Taking the ratio of the Auger and radiative rates we
obtain

( )
*

t

t
=¢

¢

n

n
, 7

X

X

r,

A,

e

e

E

E

3

3

where the characteristic density is given by

∣ ∣
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2

We emphasize that the latter equation does not
involve the unknown electron–phonon coupling con-
stant. Therefore, we can estimate the values of *ne for
WS2 and WSe2 based on the parameters of these 2D
crystals found in DFT and the experimentally known
Eg, listed in table 3

( ) ( )
( )

* *~ ~ ´- -n nWS 10 cm , WSe 4 10 cm .

9
e 2

10 2
e 2

9 2

These electron concentrations which determine the
threshold for efficient photoluminescence are remark-
ably low. This suggests that the proposed mechanism
of Auger recombination dominates over the radiative
recombination for all realistic structures.
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mode originating from themode E at theΓ-point. Using the exciton
radius of 1 nm [30], the electron–phonon coupling for the homo-
polar phonon at the Γ-point [31] ·~g 0.03 eV nm (the length
unit comes from the square root of the unit cell area), and a
deformation potential ~D 3.2 eV for the acoustic mode [32], we
estimate for the Auger rate t ~- -n0.003 cm sX

1 2 1. This rate is
siginficantly less than the experimental value, hence we conclude
that the proposed process does not dominate in the exciton–exciton
annihilation. In the latter case, the presence of the hole in the final
state allows more freedom in the possible Auger proceess. After
examining the band structure in figure 1 we note a possible Auger
scattering with the final electron–hole pair state being near the Γ-
point which permits to conserve momentum without the need for a
phonon. Using the same parameters, we find that the ratio of the
direct radiative recombination of bright excitons and the phonon-
assisted radiative recombination using the above estimated elec-
tron–phonon couplings is ~ ´4 104.
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Chapter 4

Bound complexes in monolayer

TMDCs

4.1 Introduction

Understanding the optical spectra of monolayer TMDCs, as interpreted in terms of

excitons, trions and biexcitons has recently become an issue due to the demonstration

that ground-state excitons in WS2 and WSe2 are dark, as well as a disagreement

between theory and experiment on the classification of the optical spectra in particular

for the biexciton lines. The two types of spin-orbit splitting in Molybdenum and

Tungsten based monolayer TMDCs, together with the time reversal related K and K ′

valleys at the corners of the Brillouin zone, result in a variety of possible complexes

with different optical activity, giving a rich temperature and doping dependent spectra.

In order to gain a proper understanding of the observed spectra in the two kinds of

monolayer TMDCs, a classification of the various complexes into their optical activity,

calculation of their binding energies, and prediction on the resulting photon energies

are required.

The dark ground state negatively charged excitons (trions) and neutral biexcitons

in WS2,WSe2 consist of electrons in the two opposite K,K ′ valleys with opposite out-

of-plane spin projections, and holes in the top valence band residing in one (for trions)

or both valleys (for excitons), making them dark due to both spin and momentum

conservation preventing the emission of light. In the work presented in 4.2, we analyse

a novel mechanism for the radiative recombination of these complexes and answer
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questions regarding the recombination rates, position of the lines, and line shapes.

This mechanism involves an intervalley electron-electron scattering, which mixes the

dark ground states with the bright states of complexes composed of the electrons in

the upper spin-orbit split bands, thus transferring optical oscillator strength to the

dark states. In the proposed theory, we produce a microscopic ab-initio model for this

process and use it to estimate radiative lifetimes of these ”semidark” excitonic species,

and their signatures in the temperature dependent photoluminescence as compared to

the bright complexes. In particular, the difference between the initial and final state

carriers result in a red-shift of the emission line as compared to the corresponding

excited bright complexes. Finally, these complexes being in the ground state, are

expected to be particularly dominant at low temperatures.

In the work presented in 4.3 we provide a detailed classification of the excitons,

trions and biexcitons in MoX2 and WX2 type TMDCs according to the optical activ-

ity, and activation behaviour as determined by the spin-orbit splitting. Using group

theory arguments we demonstrate the coupling of the dark exciton ground state in

WS2/WSe2 due to spin mismatch, to an out-of-plane polarized light, resulting in a

photon emission at an energy lower than the bright exciton by the spin-orbit split-

ting. Finally, the full photoluminescence spectra including also donor and acceptor

bound complexes for the two types of materials is presented, with binding energies

calculated using diffusion quantum Monte Carlo. The photon energies resulting from

recombination of donor bound biexciton, are in good agreement with experimentally

classified biexcitons, suggesting a modification to the experimental interpretation of

the observed spectra.

4.2 Semidark trions and biexcitons in WS2 and WSe2

The results presented in this section are reported in [22]: “Dark trions and biexcitons

in WS2 and WSe2 made bright by e-e scattering”, Scientific Reports 7, 45998, (2017).

My contribution to this work: Performed the calculations, prepared the figures, anal-

ysed the results and written the manuscript and supplementary material.
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Dark trions and biexcitons in WS2 
and WSe2 made bright by e-e 
scattering
Mark Danovich, Viktor Zólyomi & Vladimir I. Fal’ko

The direct band gap character and large spin-orbit splitting of the valence band edges (at the K and 
K’ valleys) in monolayer transition metal dichalcogenides have put these two-dimensional materials 
under the spot-light of intense experimental and theoretical studies. In particular, for Tungsten 
dichalcogenides it has been found that the sign of spin splitting of conduction band edges makes 
ground state excitons radiatively inactive (dark) due to spin and momentum mismatch between the 
constituent electron and hole. One might similarly assume that the ground states of charged excitons 
and biexcitons in these monolayers are also dark. Here, we show that the intervalley (K ⇆ K′) electron-
electron scattering mixes bright and dark states of these complexes, and estimate the radiative 
lifetimes in the ground states of these “semi-dark” trions and biexcitons to be ~10 ps, and analyse how 
these complexes appear in the temperature-dependent photoluminescence spectra of WS2 and WSe2 
monolayers.

The truly 2D nature of TMDCs1–7 enhances the effects of Coulomb interaction8,9, resulting in charge complexes 
such as excitons10–13, trions13 and biexcitons14 with binding energies that are orders of magnitude larger compared 
to conventional semiconductors such as GaAs. These complexes, which dominate the optical response of these 
materials, are comprised of spin/valley polarised electrons and holes residing at the corners K and K′  of the hex-
agonal Brillouin zone (BZ), where the selection rules of optical transitions require the same spin and valley states 
of the involved electrons at the conduction and valence band edges. As a result, the opposite spin projections of 
the conduction (c) and valence (v) band edges, found in monolayers of WS2 and WSe2, makes ground state exci-
tons in these 2D crystals dark15,16, so that their radiative transition would require help from defects, phonons17 or 
magnetic field18,19.

Applying the spin and valley selection rules to ground state trions and biexcitons might imply that these 
charge complexes are dark, too. In the ‘dark’ (d) state both electrons are in the bottom spin-orbit split states of 
c-band, whereas in the state to be ‘bright’ (b), one of the electrons has to be in the excited spin-split state. Here, we 
show that an intervalley scattering20,21 of the c-band electrons mixes dark and bright states of complexes (Fig. 1), 
hence transferring some optical strength from b- to d-states and making dark state ‘semi-dark’. For the resulting 
recombination line of such semi-dark complexes, we find that it is shifted downwards in energy (relative to the 
bright trion line) by 2Δ SO, twice the c-band spin-orbit splitting.

With the reference to Fig. 1, the basis of trion, T (biexciton, B) states, σ τ σ τ
σ τ

′ ′
T ,c c c c

v v  σ τ σ τ
σ τ σ τ

′ ′
′ ′( )B ,

,
c c c c
v v v v , can be described 

by spin, σ =  ↑ , ↓  and valley, τ =  K, K′  quantum numbers of their constituent c- and v-band states. In these nota-
tions, dark ground state exciton complexes Td (Bd) are ↓ ↑ ′

↑T K K
K

,  and ↓ ↑ ′
↓ ′T K K

K
,  ↓ ↑ ′

↑ ↓ ′B( )K K
K K

,
, , and the excited states ↑ ↓ ′

↑T K K
K

,  
and ↑ ↓ ′

↓ ′T K K
K

,  ↑ ↓ ′
↑ ↓ ′B( )K K

K K
,
,  are bright, Tb (Bb) (Supplementary material S1). These states are mixed by the intervalley 

interaction illustrated by a sketch in Fig. 1


∫∑

χ
= Ψ Ψ Ψ Ψ .

σ τ
σ τ σ τ σ τ σ τ− − − −

   † †H
m

d r r r r r
2

( ) ( ) ( ) ( )
(1)

iv
c

c c c c

2

,

2
, , , , , , , ,

Here, Ψ σ τ
r( )c , ,  are the conduction band electron field operators. The large momentum transfer between two 

electrons changing their valley states is determined by their Coulomb interaction at the unit cell scale, para-
metrised by a dimensionless factor χ. We estimate the size of this factor using both a tight-binding model and 
density functional theory (DFT). For the tight-binding model, we use the DFT calculated orbital decomposition 
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to construct the Bloch states at the Brillouin zone corners, and we use a 3D Coulomb potential for the interaction 
between electrons. As the c-band states at the K/K′  points are primarily composed6,7 of the metal d5 z 2 orbitals 
centred at the lattice sites 

��
R of metallic atoms in TMDC lattice, φ −

� ��
r R( ), which we use to construct the 

tight-binding model Bloch states, to find

∫∑χ
φ φ

=
− +

.⋅ � �
� �
� � ��

��

�� ��m
m

A
a

C e d r d r
r r

r r R
( ) ( )

(2)
c

B R

iK R4 3
1

3
2

1
2

2
2

2 1

Here, = π�� ( )K , 0
a

4
3 0

 with a0 the lattice constant of WX2, =A a3
2 0

2 is the unit cell area, mc is the c-band elec-
tron effective mass, m is the free electron mass, aB is the Bohr radius, and C is the transition metal d5 z 2 orbital 
amplitude in the c-band edge at the K point (supplementary material S2.2). Similarly, we evalutaed χ from wave 
functions obtained using DFT implemented in the local density approximation and VASP22 code (neglecting 
spin-orbit coupling). We used a plane-wave basis corresponding to 600 eV cutoff energy and a 12 ×  12 grid of 
k-points in the 2D Brillouin zone. We also had to employ periodic boundary conditions in the z-direction; for this 
reason we used a large inter-layer distance of 20 Å to mimic the limit of an isolated monolayer. The form factor 
was calculated by post-processing the DFT wave functions, by taking the matrix element of the bare Coulomb 
interaction between the initial and final states of the scattering process (see supplementary material S2.1). These 
two calculations have returned values of the intervalley scattering factor χ, as listed in Table 1. In the basis of 
| 〉 | 〉d b[ ; ] of dark and bright states of trions, ↓ ↑ ′

↑
↑ ↓ ′
↑T T[ ; ]K K

K
K K
K

, ,  and ↓ ↑ ′
↓ ′

↑ ↓ ′
↓ ′T T[ ; ]K K

K
K K
K

, , ,  or biexcitons 
↓ ↑ ′
↑ ↓ ′

↑ ↓ ′
↑ ↓ ′B B[ ; ]K K

K K
K K
K K

,
,

,
, , the coupling in equation (1) leads to the mixing described by a 2 ×  2 matrix

 µ
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Where Eg is the band gap, ε ε,X T, and εB are the exciton, trion, and biexciton binding energies, respectively, and 
δ δ′,  stand for the intravalley and intervalley electron-hole exchange23, δ ≈  6 meV, which we will neglect in the 
following calculations. Note that the effective masses of the c-band spin split bands differ by7 ~30–40% with the 
lower bands having the higher effective electron mass. This results in slightly higher binding energies for the dark 

Figure 1. Intervalley electron-electron scattering process. Schematics of the band structures of WX2 near the 
K, K′  points of the BZ, and the intervalley scattering process that mixes dark and bright states of trions (T) and 
biexcitons (B). Eg is the band gap and Δ SO stands for the conduction band spin splitting. Due to the large spin-
orbit splitting in the valence band, the valence band is shown only for the higher-energy spin-polarised states.

χDFT χTB

μT μB τX τsd(T) τsd(B)

[meV] [meV] [ps] [ps] [ps]

WS2 1.0 1.6 18[29] 8.6[13] 0.25 7.8[3.9] 15[7.0]

WSe2 1.3 2.0 19[30] 9.2[14] 0.26 9.4[4.7] 18[8.0]

Table 1.  Scattering matrix elements and radiative lifetimes. Listed are the Intervalley scattering parameter 
χ calculated using DFT and tight binding (TB) model and the corresponding trion and biexciton mixing 
parameters μT/B obtained using the electron-electron contact pair densities calculated in ref. 24 using diffusion 
quantum Monte Carlo, shown as DFT [TB], and the radiative lifetimes of the bright exciton, semi-dark trion 
and biexciton.
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ground state charge complexes compared to the excited states, resulting in a larger value for their energy differ-
ence Eb −  Ed. The mixing parameter ∫µ δ≡ = ∏ Φ −χ

′
  ( )b H d d r r riv m i i T B e e

2
/

2
c

2 , (where ΦT B/  stands for the 

wave function of the trion or biexciton and = ′ ′i e e h h, , , ( ), is determined by the electron-electron contact pair 
densities24 in the trion, gT and biexciton, gB. The mixing of the dark and bright states results in a slight shift of their 
energies and, most importantly, in a finite radiative decay rate, τ−sd

1 of the semi-dark (sd) trions (T) and biexcitons 
(B),

τ
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π
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where τ−X
1 is the radiative decay rate of the bright exciton25–27, determined by the electron-hole overlap factor 

Φ |(0)X
2 (Φ r( )X eh  is the envelope wave function describing relative motion of the electron and hole in the exciton), 

v is the velocity related to the off diagonal momentum matrix element. The values of the factors α =T
1
2

 and 
αB =  1 have been estimated based on the following consideration (see supplementary material S3). As the exciton’s 
binding energy is significantly larger than that of the trion or biexciton, these bound complexes can be viewed as 
strongly-bound, with an additional weakly bound electron in the case of a trion, or an exciton in the case of a 
biexciton. For a trion, this results in a reduction of the recombining electron-hole contact pair density by a factor 
of two as compared to the exciton, as the hole is shared between the two electrons such that the recombining 
electron (which has the right spin projection), will be near it only half of the time. In the case of the biexciton, 
each electron spends half of the time near its hole with which it can recombine, and half of the time near the other 
hole. As there are two excitons able to recombine we get αB =  1. The resulting values for the lifetimes (using the 
material parameters in Table 2) are summarized in Table 1.

The mixing of the dark and bright states produces photoluminescence lines shown schematically in Fig. 2. 
The emitted photon energies of these lines are determined by both the binding energies and the shake-up into the 
higher-energy spin-split c-band in the final state,

mc
m  

7 mv
m  

7
∆SO 7 A 7 ⁎r  15 EXb 28 εT 29 εB 29

v
c  

7
[meV] [Å2] [nm] [eV] [meV] [meV]

WS2 0.26 − 0.35 32 8.65 3.8 2 34 24 1.7 ×  10−3

WSe2 0.28 − 0.36 37 9.38 4.5 1.7 31 20 1.6 ×  10−3

Table 2.  Material parameters. Listed are the effective c- and v-band electron masses mc and mv, c-band spin-
orbit splitting Δ SO, unit cell area A, 2D screening length ⁎r , bright exciton energy EXb

, trion binding energy εT, 
biexciton binding energy εB, and the velocity related to the off diagonal momentum matrix element relative to 
the speed of light v/c.

Figure 2. Low temperature photoluminescence spectrum of WX2. Sketch of the low temperature (kBT <  Δ SO) 
photoluminescence spectrum of WX2 including the bright exciton, dark and bright trions (green) and dark and 
bright biexcitons (red). The excited bright trions and excitons are denoted by T* and B*. The dark exciton (Xd) 
energy is marked as a reference point = − ∆E EX X SOd b

.
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Being the ground states, the semi-dark trion and biexcitons (Tsd, Bsd) do not require an activation and there-
fore should appear in the spectrum even at low temperatures. In contrast, the bright states do require thermal 
activation, resulting in a ∆−e E k T/ B  temperature dependence of their lines intensities. For the bright exciton, trion 
↑ ↑ ′
↑

↓ ↓ ′
↓ ′T T[ ; ]K K

K
K K
K

, ,  and biexciton ↑ ↑ ′
↑ ↓ ′

↓ ↓ ′
↑ ↓ ′B B[ ; ]K K

K K
K K
K K

,
,

,
,  we have Δ E ≈  Δ SO, while for the excited mixed dark and bright 

trion ( ⁎T ) ↑ ↓ ′
↑

↑ ↓ ′
↓ ′T T[ ; ]K K

K
K K
K

, ,  and biexciton ( ⁎B ) ↑ ↓ ′
↑ ↓ ′B K K

K K
,
, , ∆ ≈ ∆E 2 SO. Also, the presence of a final state electron or 

exciton results in an antisymmetric line shape with a cutoff due to the recoil kinetic energy of the remaining elec-
tron or exciton that shifts the emission line to a lower energy. A typical recoil kinetic energy is k Tm

m B
X

c
 for the tri-

ons and kBT for biexcitons, with kB the Boltzmann constant, mX the exciton mass, and mc the c-band electron 
effective mass.

In conclusion, we have shown that intervalley electron-electron scattering makes “dark” ground state trions 
and biexcitons in Tungsten dichalcogenides WS2 and WSe2 optically active, with a lifetime τT/B ~ 10 ps, to compare 
with a sub-ps lifetime of bright excitons in 2D TMDCs.
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WS2 and WSe2 made bright by e-e scattering”
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S1 Group theory analysis of excitons, trions and biexcitons in

Tungsten dichalcogenides

S1.1 Introduction

Group theory allows to utilize the symmetry properties of the Hamiltonian in order to gain insight

into selection rules for microscopic processes in quantum systems. As a starting point, the eigen-

states of the Hamiltonian are classified according to the irreducible representations (IrReps) of the

symmetry group, in our case the point group C3h. In monolayer TMDCs, DFT calculations1, 2 (see

also S2.1) have found that band edges of monolayer WS2 and WSe2 are found at the two inequiva-

lent corners, K andK ′ of the Brillouin zone. Hence, for the sake of their classification we consider

the extended point group3, 4, C ′′
3v = C3v + tC3v + t2C3v, where t are translations by a lattice vector.

This enables us to treat states of excitons and complexes at K, K ′ and zero momentum in the same

fashion. The character table and product table for the IrReps of the extended point group C ′′3v are
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Table S1: C ′′3v character table.

Character table for the irreducible representations (IrRep) of the extended point group C ′′3v, and their corre-

spondence to the conduction (c) and valence (v) band electrons states.

C ′′3v E t, t2 2C3 9σv 2tC3 2t2C3

A1 1 1 1 1 1 1

A2 1 1 1 -1 1 1

E 2 2 -1 0 -1 -1

E ′1 (c) 2 -1 -1 0 2 -1

E ′2 (v) 2 -1 2 0 -1 -1

E ′3 2 -1 -1 0 -1 2

given in Tables S1, S2, respectively. DFT calculations1, 2 (see also S2.1) have also found that at

the K and K ′ valleys, the orbital composition of the Bloch states is dominated by the z → −z

symmetric d-orbitals (d0 for the c-band and d±2 for the v-band in the two valleys) of transition

metal, allowing to classify the c and v-band Bloch states at the K and K ′ valleys as transforming

according to the two dimensional IrReps of the extended point group, E ′1 and E ′2, respectively.

Using classification of the single electron states, we consider excitons, trions, and biexcitons.

For this, we take direct products of the corresponding IrReps, and, then, apply the product rules for

the IrReps of C ′′3v, shown in Table S2. This group theory analysis enables us to identify excitonic

basis states that can be mixed by the intervalley e-e scattering, leading to the class of semi-dark

trions and biexcitons discussed in the main text.
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Table S2: C ′′3v product table.

Product table for the irreducible representations of the extended point group C ′′3v.

C ′′3v A1 A2 E E ′1 E ′2 E ′3

A1 A1 A2 E E ′1 E ′2 E ′3

A2 A2 A1 E E ′1 E ′2 E ′3

E E E A1 ⊕ A2 ⊕ E E ′2 ⊕ E ′3 E ′1 ⊕ E ′3 E ′1 ⊕ E ′2

E ′1 (c) E ′1 E ′1 E ′2 ⊕ E ′3 A1 ⊕ A2 ⊕ E ′1 E ⊕ E ′3 E ⊕ E ′2

E ′2 (v) E ′2 E ′2 E ′1 ⊕ E ′3 E ⊕ E ′3 A1 ⊕ A2 ⊕ E ′2 E ⊕ E ′1

E ′3 E ′3 E ′3 E ′1 ⊕ E ′2 E ⊕ E ′2 E ⊕ E ′1 A1 ⊕ A2 ⊕ E ′3

S1.2 Excitons

The exciton states transform according to the direct product representation of the c- and v-band

states given by

E ′1 ⊗ E ′2 = E ⊕ E ′3. (S1)

The 2D IrRep E corresponds to the intravalley excitons with both electron and hole residing in

either the K or K ′ valleys, and the 2D IrRep E ′3 corresponds to the intervalley excitons with the

electron and hole residing in opposite valleys making the exciton dark due to momentum mis-

match. By further introducing the spin projections of the electron and hole, we have for each

representation two possible total spin projections, |Sz| = 1 corresponding to dark excitons due to

spin conservation, and Sz = 0 corresponding to bright exciton states. Using the notation intro-
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duced in the text for trions and biexcitons, the E IrRep dark intravalley exciton states are given

by [X↑K↓K ;X↓K
′

↑K′ ] with |Sz| = 1, and the bright intravalley excitonic states by [X↑K↑K ;X↓K
′

↓K′ ] with

|Sz| = 0. Similarly, for the intervalley excitons transforming according to E ′3, which are dark due

to momentum conservation, we have [X↑K↑K′ ;X
↓K′

↓K ] with Sz = 0, and [X↑K↓K′ ;X
↓K′

↑K ] with Sz = 1,

being dark due to both spin and momentum conservation.

S1.3 Trions

Next we classify the trion states composed of two electrons and a hole. The strongly bound trion

states require the two-electron wave function to be symmetric with respect to exchanging the elec-

trons coordinates and the two electrons to have different spin/valley indices corresponding to a

singlet state, as obtained in ref. 5 using Monte Carlo calculations. The two-electron state trans-

forms according to the direct product of the c-band electrons representations given by

E ′1 ⊗ E ′1 = A1 ⊕ A2 ⊕ E ′1. (S2)

According to Table S1, the symmetric combination of the two electrons transforms according to

A1 or E ′1. The identity representation corresponds to both electrons residing in opposite valleys,

while the 2D IrRep E ′1 corresponds to both electrons residing in the same valley K or K ′. Next,

to obtain the representation of the trion we include the hole state E ′2 and take the direct product of

the two electrons and the hole. This gives in the first case

A1 ⊗ E ′2 = E ′2, (S3)
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corresponding to the hole residing in either the K or K ′ valleys and the electrons residing in

opposite valleys. Including the spin projection this corresponds to the following trion states,

[T ↑K↓K,↑K′ ;T
↓K
↓K,↑K′ ] which are the semi-dark singlet ground state trions, and [T ↑K↑K,↓K′ ;T

↓K′

↑K,↓K′ ] which

are the excited bright trion singlet states. As the excited bright and semi-dark trion states both trans-

form according to the same E ′2 IrRep, the two states can be mixed through the electron-electron

intervalley scattering introduced in the main text, which transforms as the identity representation.

The bright trion triplet states with both electrons in opposite valleys also transform according to

the E ′2 IrRep and are given by [T ↑K↑K,↑K′ ;T
↓K′

↓K,↓K′ ], and the dark trion triplet states (due to spin

conservation) are given by [T ↑K↓K,↓K′ ;T
↓K′

↑K,↑K′ ]. In the second case, choosing for the two-electron

representation the E ′1 IrRep,

E ′1 ⊗ E ′2 = E ⊕ E ′3. (S4)

Here, E corresponds to states with the two electrons and hole residing in the same valley K or

K ′. Requiring the electrons to have opposite spin projections gives the following bright trion

states [T ↑K↑K,↓K ;T ↓K
′

↑K′,↓K′ ]. E ′3 corresponds to the two electrons residing in the same valley while

the hole is in the opposite valley, giving the dark trion states (due to momentum conservation)

[T ↓K
′

↑K,↓K ;T ↑K↑K′,↓K ].

S1.4 Biexcitons

The bound biexciton states are composed of a spatially symmetric wave function for the two elec-

trons and for the two holes. This corresponds to the IrReps A1 ⊕ E ′1 for the two electrons, and
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A1 ⊕E ′2 for the two holes. Taking the direct product of the two-electron and two-hole states gives

the possible representations of the biexciton states

(A1 ⊕ E ′1)⊗ (A1 ⊕ E ′2) = A1 ⊕ E ′1 ⊕ E ⊕ E ′3 ⊕ E ′2. (S5)

The states transforming according to the IrRep E correspond to both electrons and both holes re-

siding in the same valley, similarly the E ′3 IrRep corresponds to both electrons residing in the same

valley and both holes residing in the opposite valley to the electrons, and finally E ′2 corresponds

to both electrons residing in opposite valleys, and both holes residing in the same valley. As these

three cases require one of the holes to reside in the lower spin-orbit split band in order for the

biexciton to be bound, we do not consider these states. Of particular interest is the A1 represen-

tation corresponding to both electrons and both holes residing in opposite valleys. Including the

spin projections this corresponds to the following biexciton state, B↑K,↓K
′

↓K,↑K′ which is the semi-dark

(due to momentum conservation) ground state singlet biexciton, and B↑K,↓K
′

↑K,↓K′ which is the excited

bright state singlet biexciton. As the two states transform according to the same IrRep A1, they

can also be mixed by the electron-electron intervalley scattering process as in the trions case. The

biexciton triplet states are given byB↑K,↓K
′

↑K,↑K′ andB↑K,↓K
′

↓K,↓K′ both being optically bright. The biexciton

states transforming according to the E1 IrRep are bright having both electrons in the same valley

and both holes in opposite valleys, [B↑K,↓K
′

↑K,↓K ;B↑K,↓K
′

↑K′,↓K′ ].
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Table S3: Group theory classification.

Summary of the group theory classification of excitonic complexes, X-excitons, T -trions, and B- Biexci-

tons, in Tungsten dichalcogenides according to the irreducible representations of the extended point group

C ′′3v.

IrRep States Bright Dark
Exciton or complex

(see Fig. 2)

X

E
[X↑K↓K ;X↓K

′

↑K′ ] X Xd

[X↑K↑K ;X↓K
′

↓K′ ] X Xb

E ′3

[X↑K↑K′ ;X
↓K′

↓K ] X Xd

[X↑K↓K′ ;X
↓K′

↑K ] X

T

E ′2

[T ↑K↓K,↑K′ ;T
↓K′

↓K,↑K′ ]





mix
X Tsd

[T ↑K↑K,↓K′ ;T
↓K′

↑K,↓K′ ] X T ∗

[T ↑K↑K,↑K′ ;T
↓K′

↓K,↓K′ ] X T

[T ↑K↓K,↓K′ ;T
↓K′

↑K,↑K′ ] X −

E [T ↑K↑K,↓K ;T ↓K
′

↑K′,↓K′ ] X T

E ′3 [T ↓K
′

↑K,↓K ;T ↑K↑K′,↓K ] X −

B
A1

B↑K,↓K
′

↓K,↑K′





mix
X Bsd

B↑K,↓K
′

↑K,↓K′ X B∗

B↑K,↓K
′

↑K,↑K′ X B

B↑K,↓K
′

↓K,↓K′ X B

E ′1 [B↑K,↓K
′

↑K,↓K ;B↑K,↓K
′

↑K′,↓K′ ] X B
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S2 Model calculations of the intervalley scattering matrix ele-

ment

S2.1 Ab initio density functional theory

In the DFT calculations the wave functions were obtained in the local density approximation, using

a plane-wave basis of 600 eV cutoff energy and a k-point grid of 12× 12 in the 2D Brillouin zone.

We used the VASP10 code for these calculations, which employs periodic boundary conditions in

three dimensions even for 2D materials; for this reason we used a large inter-layer distance of 20 Å

to mimic the limit of an isolated monolayer. The form factor was calculated by post-processing the

DFT wave functions, simply taking the matrix element of the bare Coulomb interaction between

the initial and final states of the scattering process. In the calculation of this matrix element we

neglected spin-orbit coupling.

The form factor was calculated in reciprocal space by Fourier transforming Eq. (2) in the

main text, leading to a summation on the grid of reciprocal lattice vectors. This technique is

sensitive to the plane-wave cutoff energy. We have therefore tested the sensitivity of the form

factor to the cutoff energy by calculating it for WS2 with an extremely reduced cutoff of 100 eV

and an increased cutoff of 900 eV. We found that reducing the cutoff reduces the form factor by

10 %, while increasing the cutoff increases the form factor by 3 %.

Convergence of the calculation was also tested for the inter-layer separation. We found that
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decreasing the separation to 15 Å only changes the form factors by less than 1 %.

In Fig. S1 we show the DFT calculated band structure for WS2 and WSe2, showing the band

edges at the K point and the spin-orbit splitting. In Tables S4 and S5 we list the DFT obtained

orbital decomposition of the electron states at theK/K ′ points in the conduction and valence bands

demonstrating the dominance of the transition metal d orbitals.

Figure S1 | DFT calculated band structure of WX2.

Table S4 | DFT calculated orbital decomposition at the K/K ′ point in WS2.

band W − 5dz2 W − 5dx2−y2 W − 5dxy W − 6s S− px S− py

c 86.9% 0 0 7.8% 2.6% 2.6%

v 0 39.5% 39.5% 0 10.2% 10.2%
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Table S5 | DFT calculated orbital decomposition at the K/K ′ point in WSe2.

band W − 5dz2 W − 5dx2−y2 W − 5dxy W − 6s Se− px Se− py

c 85.9% 0 0 8.1% 2.2% 2.2%

v 0 40.1% 40.1% 0 9.2% 9.2%

S2.2 Tight-binding model

In the tight binding model, the Bloch wave function of the conduction band electrons at the K

point, using only the transition metal d-orbital is given by

Ψ(~r) =
C√
N

∑

i

ei
~K·~Riφ(~r − ~Ri), (S6)

where N is the number of unit cells, ~Ri is the lattice vector coinciding with the transition metal

atoms positions, and C is the weight of the 5dz2 orbital φ centred on ~Ri. The value of C is obtained

from the orbital decomposition given in Tables S4, S5 for WS2 and WSe2, respectively. The 3D

coulomb matrix element is given by

M = e2
∫
d3~r1d

3~r2
|~r2 − ~r1|

Ψ∗(~r1)Ψ
∗(~r2)Ψ(~r1)Ψ(~r2). (S7)

Plugging in the Bloch wave function and using the two-centre approximation for the electron-

electron Coulomb interaction we get

M = e2|C|4
∑

~R

ei
~K·~R
∫
d3~r1d

3~r2
|φ(~r1)|2|φ(~r2)|2
|~r2 − ~r1 + ~R|

, (S8)

where the summation is over the lattice sites ~R = l~a1 + n~a2, where ~a1 = a0(1, 0), and ~a2 =

a0
2

(1,
√

3) are the lattice primitive vectors, a0 is the lattice constant, and l, n are integers. Finally,
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the matrix element is related to the dimensionless parameter χ through the intervalley interaction

Hamiltonian giving,

χ =
mc

m

A

aB
|C|4

∑

~R

ei
~K·~R
∫
d3~r1d

3~r2
|φ(~r1)|2|φ(~r2)|2
|~r2 − ~r1 + ~R|

, (S9)

where mc is the c-band electron mass, m is the free electron mass, A is the unit cell area, and aB

is the Bohr radius.

For the atomic orbital entering into the Coulomb matrix element we use the Roothaan-

Hartree-Fock (RHF) atomic orbitals6, 7 which consist of a linear combination of Slater-type or-

bitals,

φnlm(~r) = Y l
m(θ, φ)

∑

j

CjSj(r) = Y l
m(θ, φ)Rnl(r), (S10)

where n, l, and m are the principle, azimuthal and magnetic quantum numbers, and Y l
m(θ, φ) are

the spherical harmonics. The Slater-type radial orbital S(r) has the general form

S(r) = Nsr
n−1e−Zr, (S11)

here Ns = (2Z)n+1/2√
(2n)!

is a normalization constant, and Z is the orbital exponent. Using the tables in

ref. [7] we construct the Tungsten 5dz2 orbital, with the radial part given by (in atomic units)

R5d(r) = −1070.29e−29.4731rr2 − 1297.24e−18.363rr2

+ 1192.26e−12.073rr3 + 239.385e−7.9781rr3

− 56.2785e−5.19312rr4 − 7.74766e−3.14551rr4

− 0.18956e−1.79159rr4,

(S12)
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and the angular part is Y 2
0 (θ, φ) = 1

4

√
5
π
(3 cos2 θ − 1).

We separate the calculation of the matrix element into two parts, first taking ~R = 0 giving

the on-site contribution, and then allowing for ~R 6= 0. For the on-site contribution with ~R = 0, we

expand the Coulomb potential in spherical harmonics

1

|~r2 − ~r1|
=
∞∑

l=0

rl<
rl+1
>

m=l∑

m=−l

4π

2l + 1
Y l
m

∗
(θ′, φ′)Y l

m(θ, φ), (S13)

which allows to separate the radial and angular integrations. The angular integration consists of

products of three spherical harmonics which can be written in terms of Wigner 3j-symbols,

∫
Y l1
m1

(θ, φ)Y l2
m2

(θ, φ)Y l3
m3

(θ, φ) sin θdθdφ (S14)

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π



l1 l2 l3

0 0 0






l1 l2 l3

m1 m2 m3


 .

The Wigner 3j-symbols impose selection rules on the possible values of the different angular mo-

mentum quantum numbers, thus reducing the number of terms in the sum and the number of

integrations needed. In particular we must have, m1 + m2 + m3 = 0, |mi| < li, and |l1 − l2| ≤

l3 ≤ l1 + l2.

For the case of non-zero ~R, since the wave functions have a typical spread smaller than the

lattice constant, we use the following expansion8, 9 valid for |~r1 + ~r2| < R,
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Figure S2 | Convergence of the intervalley scattering matrix element calculation.

(a) Analytical calculation of the matrix element as a function of the inverse number of lattice points

in the summation. (b) Monte Carlo calculation results. We fit the points to third order polynomials

and extract the value for 1/p → 0 corresponding to summation over an infinite lattice. The data

points are separated into three sequences with a period of 3, all converging to the same point. This

behaviour of the sum is attributed to the phase factor in the summation involving the ~K vector, and

to the rhombic unit cell used in the summation. (c) Sketch of the rhombic unit cell used for the

summation over the triangular lattice points for increasing values of p.
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1

|~r2 − ~r1 + ~R|
=

∞∑

la,lb=0

R−(la+lb+1)rla1 r
lb
2 Vla,lb ; (S15)

Vla,lb = (4π)3/2(−1)lb




2(la + lb)

2la




1/2

× [(2la + 1)(2lb + 1)(2(la + lb) + 1)]−1/2

×
la+lb∑

M=−(la+lb)
(−1)MY L

−M(R̂)[Y la(r̂1)⊗ Y lb(r̂2)]
la+lb
M ;

[Y la(r̂1)⊗ Y lb(r̂2)]
la+lb
M =

la∑

ma=−la

lb∑

mb=−lb
Y la
ma

(r̂1)Y
lb
mb

(r̂2)

× 〈lama; lbmb|(la + lb)M〉.

In Fig. S1 we show the convergence of the summation using both the detailed analytical

method and a Monte Carlo calculation of the integral in Eq. (S9), showing that both methods

converge to the same value for the dimensionless matrix element χ.

S3 Trion and biexciton oscillator strength estimation

The oscillator strength of the semi-dark trion and biexciton originates from the component of the

excited bright state (T ∗, B∗) in the mixed semi-dark and bright states. We express it using the

oscillator strength of the exciton utilizing the fact that both the trion and biexciton can be regarded

as a strongly bound exciton which is weakly bound to an electron in the trion case and another

exciton in the biexciton case.
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The oscillator strength is parametrized using αT/B in Eq. (4) of the main text, giving the

radiative rate of the semi-dark states in terms of the exciton radiative rate. To obtain the value of

this parameter we write the excited trion and biexciton wavefunciton as a symmetrized product

of an exciton and an electron in the trion case, and a symmetrized product of two excitons in the

biexciton case.

For the excited trion we have,

ΨT (rK↑e1 , r
K′↓
e2 , rK↑h1 ) =

ΨX(rK↑e1 , r
K↑
h1 )Ψe(r

K′↓
e2 ) + ΨX(rK

′↓
e2 , rK↑h1 )Ψe(r

K↑
e1 )√

2
. (S16)

The oscillator strength is determined to the electron-hole contact pair density, given by

gTeh = 〈ΨT (rK↑e1 , r
K′↓
e2 , rK↑h1 )|δ(re − rh)δσe,σhδτe,τh|ΨT (rK↑e1 , r

K′↓
e2 , rK↑h1 )〉

=
1

2

∫
d2re1|ΨX(re1, re1)|2 =

gXeh
2
.

(S17)

where σe, σh are the spins of the electron and hole, τe, τh are the valley indexes, and gXeh is the

electorn-hole contact pair density of the exciton. Therefore we get αT = 1/2.

Similarly, for the biexciton

ΨB(rK↑e1 , r
K′↓
e2 , rK↑h1 , r

K′↓
h2 ) =

ΨX(rK↑e1 , r
K↑
h1 )ΨX(rK

′↓
e2 , rK

′↓
h2 ) + ΨX(rK

′↓
e2 , rK↑h1 )ΨX(rK↑e1 , r

K′↓
h2 )√

2
.

(S18)

The corresponding electron-hole contact pair density

gBeh =
1

2

(∫
d2re1|ΨX(re1, re1)|2 +

∫
d2re2|ΨX(re2, re2)|2

)
= gXeh. (S19)

The two terms in the parenthesis come from the two excitons in the two vallyes both being able to

recombine, giving αB = 1.
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Excitonic effects play a particularly important role in the optoelectronic behavior of two-dimensional
semiconductors. To facilitate the interpretation of experimental photoabsorption and photoluminescence spectra
we provide (i) statistically exact diffusion quantum Monte Carlo binding-energy data for a Mott-Wannier model
of (donor/acceptor-bound) excitons, trions, and biexcitons in two-dimensional semiconductors in which charges
interact via the Keldysh potential, (ii) contact pair-distribution functions to allow a perturbative description of
contact interactions between charge carriers, and (iii) an analysis and classification of the different types of bright
trions and biexcitons that can be seen in single-layer molybdenum and tungsten dichalcogenides. We investigate
the stability of biexcitons in which two charge carriers are indistinguishable, finding that they are only bound
when the indistinguishable particles are several times heavier than the distinguishable ones. Donor/acceptor-bound
biexcitons have similar binding energies to the experimentally measured biexciton binding energies. We predict
the relative positions of all stable free and bound excitonic complexes of distinguishable charge carriers in the
photoluminescence spectra of WSe2 and MoSe2.

DOI: 10.1103/PhysRevB.96.075431

I. INTRODUCTION

The last decade has witnessed a remarkable surge of interest
in the properties of truly two-dimensional (2D), atomically thin
semiconductors. These include monolayer transition-metal
dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, and
WSe2, which acquire a direct-gap character in hexagonal

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

monolayer form [1–4]. The direct gap and strong optical ab-
sorption of TMDCs suggest a range of potential optoelectronic
applications, e.g., in photodetectors, photovoltaics, and light-
emitting diodes. A particularly interesting aspect of monolayer
TMDCs is the strong excitonic effects present in their pho-
toabsorption and photoluminescence spectra [5–7], including
nonhydrogenic Rydberg spectra [8,9] and lines ascribed to tri-
ons (charged excitons) [10–12] and biexcitons (bound pairs of
excitons) [13–16]. The nonhydrogenic nature of the excitonic
energy spectrum is due to lateral polarization effects in 2D
crystals, which modify the form of the Coulomb interaction
between charge carriers. Mott-Wannier models of 2D trions
and biexcitons have been studied using quantum Monte Carlo
(QMC) methods [17–25], variational methods [26–28], and

2469-9950/2017/96(7)/075431(24) 075431-1 Published by the American Physical Society
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hyperspherical harmonics approaches [29], and interpolation
formulas linking the 2D-screened and 1/r Coulomb inter-
action regimes have been proposed. Here we extend these
studies to provide numerically exact binding-energy data for all
nonlocal screening strengths, including an analysis of limiting
behavior, and we classify the types of trions and biexcitons
that can be observed in different TMDCs. We also investi-
gate donor- and acceptor-bound charge-carrier complexes in
TMDCs, such as donor-bound biexcitons and quintons, which
have not to our knowledge been studied before.

The rest of the article is structured as follows. In Sec. II
we describe the band structures of molybdenum and tungsten
dichalcogenides and analyze the nature of the trions and
biexcitons in these materials; furthermore, we perform a
group theoretical analysis of exciton properties. In Sec. III we
explain the Keldysh form of the screened Coulomb interaction
between charges in 2D semiconductors, describe the ways
in which charge-carrier complexes are expected to dissociate
and recombine, and explain the importance of the contact pair
distribution function (PDF). In Sec. IV we describe our com-
putational methodology for solving the Mott-Wannier model
of charge-carrier complexes. We present our numerical results
for the binding energies and PDFs of the different complexes
in Sec. V. Finally, we draw our conclusions in Sec. VI.

II. BRIGHT AND DARK BIEXCITONS AND TRIONS IN
MOLYBDENUM AND TUNGSTEN DICHALCOGENIDES

A. Classification of trions and biexcitons

In monolayer molybdenum and tungsten dichalcogenides
the conduction-band minimum and valence-band maximum

occur at the K and K ′ points of the hexagonal Brillouin
zone. Spin-orbit coupling induces a significant splitting of
both the valence band and the conduction band at K and
K ′. In molybdenum diselenides, the valence-band maximum
has the same spin as the conduction-band minimum within
each valley, while in tungsten dichalcogenides such states
have opposite spins [3]. Figure 1(a) presents examples of the
ways in which biexcitons can be formed in molybdenum and
tungsten dichalcogenides. The spin-splitting of the valence
band (0.15–0.5 eV) is sufficiently large that no holes in
the lower spin-split valence band are expected at room
temperature; however, the spin splitting of the conduction band
(�′ = 3−50 meV) is small enough that electrons can be found
in the upper spin-split conduction band at room temperature
[3].

An exciton, biexciton, or trion is said to be either dark
or semidark when the recombination of an electron and hole
is forbidden by spin and momentum conservation; otherwise
the complex is said to be bright. Semidark complexes are
those in which recombination can in fact take place due
to intervalley scattering with an accompanying energy shift.
The precise photon energies depend on whether the electrons
occupy the higher- or lower-energy spin-split bands in the
initial and final states. Furthermore, the intensity of a spectral
line depends on the thermal occupancy of the initial state.
Figures 1(b) and 1(c) present a classification of biexcitons
in molybdenum and tungsten dichalcogenides with respect
to the recombination energy and the intensity of the emit-
ted photons. This intensity has the following temperature
dependence:

I (T ) ∼
⎧⎨
⎩

const. for no electrons in the upper spin-split conduction band,

e−�′/(kBT ) for one electron in the upper spin-split conduction band,

e−2�′/(kBT ) for two electrons in the upper spin-split conduction band,

(1)

where �′ is the spin-orbit-induced splitting of the conduction
band, kB is Boltzmann’s constant, and T is the tempera-
ture. A similar classification can be made for trions; see
Fig. 2. In a photoluminescence experiment, we expect to
see energies attributed to different kinds of biexcitons and
trions and emission lines of varying intensity, as explained in
Sec. III C.

The opposite spin splittings of the conduction and valence
bands in tungsten dichalcogenides result in the ground-state
trions and biexcitons being dark, with the two electrons
residing in opposite valleys. These dark complexes are coupled
through an intervalley electron-electron scattering to their
excited bright counterparts with both electrons residing in the
upper spin-split conduction band. This coupling gives a finite
oscillator strength to the dark ground states that is proportional
to [μbd/(2�′)]2, where μbd is the coupling matrix element
between dark and bright states. As a result, the expected
photoluminescence spectrum contains two additional lines
resulting from the recombination of these “semidark” trions
and biexcitons, at an energy shifted downwards by 2�′ relative
to the bright complexes, and having a temperature-independent
intensity.

B. Group theoretical analysis of excitons

Exciton wave functions can be classified according to the
irreducible representation (irrep) of the point-group symmetry
of the TMDC crystal, D3h. As the states in the two valleys are
degenerate, one can treat the two valleys simultaneously by
using the extended group D′′

3h = D3h + tD3h + t2D3h, where
t denotes translation by a lattice vector. The character table of
the extended group is given in Table IX.

TABLE I. Classification of exciton states into irreps of D′′
3h and

the polarization (‖ and z for in-plane and out-of-plane, respectively)
of the electric field to which the excitons are coupled.

Irrep Excitons Field

E+ XK↑
K↑, XK ′↓

K ′↓ E‖
E+ XK↑

K↓, XK ′↓
K ′↑

A−
2 X (dark):

{
XK↓

K↑ − XK ′↑
K ′↓
}

Ez

E− XK↓
K↑, XK ′↑

K ′↓
A−

1

{
XK↑

K↓ + XK ′↓
K ′↑
}
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FIG. 1. (a) Spin-split valence and conduction bands for MoSe2

(left) and WSe2 and WS2 (right). We only show the spin splitting
of the conduction band; the spin splitting of the valence band is
much larger, so that no holes in the lower spin-split valence band
are expected at room temperature [3]. (b) and (c) Classification
of biexciton recombination processes in molybdenum and tungsten
dichalcogenides, respectively. � is the band gap, while �′ is
the spin splitting of the conduction band. E′

δ ≡ EXX − EX is the
difference between the total energies EXX and EX of a biexciton
and an exciton. h̄ω indicates the photon energies at which peaks in
photoluminescence spectra are expected to appear. XXk1σ1k2σ2

k3σ3k4σ4
denotes

a biexciton consisting of conduction-band electrons in valleys k1 and
k2 with spins σ1 and σ2 and valence-band holes in valleys k3 and k4

with spins σ3 and σ4. For example, the biexcitons shown in (a) are
both denoted by XXK↓K ′↑

K↓K ′↑.

FIG. 2. As Fig. 1, but for negative trions in molybdenum and
tungsten dichalcogenides. Eδ ≡ EX− is the total energy EX− of a
negative trion. Tk1σ1k2σ2

k3σ3
denotes a trion consisting of conduction-band

electrons in valleys k1 and k2 with spins σ1 and σ2 and a valence-band
hole in valley k3 with spin σ3.

The total exciton wave function X is given in general by
the product of three components: the spatial envelope function
�, the Bloch or lattice wave functions of the electron and hole
Uk , and the spin part χ :

X = �(re,rh) ⊗ Uk(re,rh) ⊗ χ (se,sh). (2)

The representations of the wave functions by irreps consist
of the direct product of the individual irreps corresponding
to the three components: �X = �� ⊗ �U ⊗ �χ . The tightly
bound ground-state excitons are characterized by a maximally
symmetrized envelope function corresponding to the identity
irrep �� = A+

1 . Therefore the representations of the exciton
states are determined by the irreps of the lattice and spin
parts.

The conduction- and valence-band Bloch states transform
according to the 2D irreps E′

1 and E′
2, respectively. Using the

product table, Table X, the lattice part of the exciton wave
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function transforms as

E′+
1 ⊗ E′+

2 = E+ ⊕ E′+
3 , (3)

where the 2D irrep E+ corresponds to intravalley excitons
in the K and K ′ valleys, and E′+

3 corresponds to intervalley
excitons, which are dark due to momentum conservation. In the
following, we will consider the E+ intravalley excitons only.

The exciton spin part consists of two spin-1/2 particles
corresponding to the spinor 2D irrep D1/2. The direct product
of the two spinors can be decomposed into the crystal point
group irreps as

D1/2 ⊗ D1/2 = A+
1 ⊕ A+

2 ⊕ E−. (4)

Hence the total exciton representation is given by

E+
lattice ⊗ (A+

1 ⊕ A+
2 ⊕ E−)spin = 2E+ ⊕ A−

1 ⊕ A−
2 ⊕ E−.

(5)
The E+ irrep corresponds to the vector representation, and
therefore the two E+ irreps correspond to excitons coupled
to in-plane polarized light. The z coordinate transforms as
the A−

2 irrep, and therefore the A−
2 exciton is coupled to

out-of-plane polarized light, which involves a spin-flip process
in recombination [30]. In the case of tungsten dichalcogenides,
the A−

2 exciton is the ground-state exciton, and results in
photon emission at an energy that is lower than the excited
bright exciton by the spin-orbit splitting of the conduction
band �′. The A−

1 and E− excitons are not coupled to light.
A summary of the classification of exciton states is given in
Table I using a notation similar to that used in Figs. 1 and
2. Finally, we note that the spin-flip transition resulting in
the emission of out-of-plane polarized light corresponding to
the A−

2 exciton is also relevant for ground-state trions and
biexcitons in tungsten dichalcogenides, resulting in trion or
biexciton emission at a photon energy shifted downwards
relative to the excited bright states by �′.

III. CHARGE-CARRIER COMPLEXES IN 2D
SEMICONDUCTORS

A. Screened Coulomb interaction between charge carriers

We model the charge carriers in a 2D semiconductor
using a Mott-Wannier model, in which small numbers of
quasielectrons and quasiholes are treated within the band
effective mass approximation and interact via an appropriately
screened Coulomb interaction. The band effective masses for
different 2D semiconductors are assumed to be 2D-isotropic,
and are discussed in Sec. V B 2. However, unlike quasi-2D
electron(-hole) systems in GaAs/InAs heterostructures, the
form of the Coulomb interaction is profoundly affected by
the 2D nature of single-layer TMDCs, as we will now discuss.

Consider a charge density ρ(x,y)δ(z) in the z = 0 plane
of the 2D material, embedded in an isotropic medium
of permittivity ε. The resulting electric displacement field
is D = −ε∇φ + P⊥(x,y)δ(z) = −ε∇φ − κ[∇φ(x,y,0)]δ(z),
where φ is the electrostatic potential, P⊥(x,y) is the in-plane
polarization, and κ is the in-plane susceptibility of the material.
By using Gauss’s law, ∇ · D = ρδ(z), we obtain

ε∇2φ = −ρδ(z) − κ[∇2φ(x,y,0)]δ(z). (6)

After taking the Fourier transform, denoting the wave vector
in the (x,y) plane by q, and the wave number in the z direction
by k, we find

φ(q,k) = ρ(q) − κq2φ(q,z = 0)

ε(q2 + k2)
. (7)

However

φ(q,z = 0) = 1

2π

∫
φ(q,k) dk

= 1

2εq
[ρ(q) − κq2φ(q,z = 0)]. (8)

Rearranging, we find the in-plane electric potential to be

φ(q,z = 0) = ρ(q)

q(2ε + qκ)
. (9)

Therefore the electrostatic potential energy between charges
qi and qj in a 2D semiconductor is

v(q) = qiqj

2εq(1 + r∗q)
, (10)

where r∗ ≡ κ/(2ε). After taking the Fourier transform, the
potential energy can be written as

v(r) = qiqj

4πεr∗
V

(
r

r∗

)
, (11)

where r is the separation of the particles and

V (r/r∗) = π

2

[
H0

(
r

r∗

)
− Y0

(
r

r∗

)]
, (12)

where Hn(x) is a Struve function and Yn(x) is a Bessel function
of the second kind. This result was first derived by Keldysh
[31], and we refer to the interaction of Eq. (12) as the Keldysh
interaction. At long range (r  r∗) this potential becomes a
Coulomb interaction:

V (r/r∗) ≈ r∗/r, (13)

while at short range (r � r∗) it is approximately logarithmic:

V (r/r∗) ≈ [ln(2r∗/r) − γ ] = ln

(
2r∗

exp(γ )r

)
, (14)

where γ is Euler’s constant. We refer to the interaction
potential of Eq. (14) as the logarithmic interaction. The
Keldysh interaction is plotted in Fig. 3, along with the Coulomb
(r∗ = 0) and logarithmic (r∗ → ∞) approximations.

The following approximation to Eq. (12) was introduced in
Ref. [32]:

V (r/r∗) ≈ − ln

(
r/r∗

1 + r/r∗

)
− [γ − ln(2)]e−r/r∗ . (15)

This form of potential was used in the diffusion quantum
Monte Carlo (DMC) study of Ref. [21]. It is also plotted in
Fig. 3, where it can be seen that the error in Eq. (15) is as large
as several percent in the region r ≈ r∗. We compare DMC
results obtained using Eqs. (12) and (15) in Sec. IV F.
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FIG. 3. Dimensionless interaction potential between charge car-
riers in a 2D semiconductor, as defined in Eq. (11). The inset shows
the percentage error in different approximations [Eqs. (13), (14), and
(15)] to the Keldysh interaction of Eq. (12).

Finally, the Mott-Wannier-Keldysh Schrödinger equation
for a set of charged quasiparticles in a 2D semiconductor is⎡

⎣−
∑

i

h̄2

2mi

∇2
i +

∑
i>j

qiqj

4πεr∗
V

(
rij

r∗

)⎤⎦ψ = Eψ, (16)

where mi and qi are the band effective mass and charge of
particle i, rij is the separation of particles i and j , and E is the
energy eigenvalue.

Now consider the situation in which the 2D semiconductor
has a dielectric medium of permittivity εa above it and a
dielectric medium of permittivity εb below it, as would be
the case for a 2D semiconductor deposited on a substrate. In
general this is a more complicated problem than the situation
described above. However, if we take ε ≡ (εa + εb)/2 in the
expressions above, the correction to the electrostatic energy of
Eq. (11) is second order in εa − εb. Hence the Keldysh interac-
tion remains valid when the permittivity ε is chosen to be the
average of the permittivities of the media on either side of the
2D semiconductor, provided these permittivities are similar.

B. Units and scaling

1. Excitonic units

The energies of complexes interacting via the Keldysh
or Coulomb interactions are given in terms of the exciton
Rydberg, R∗

y = μe4/[2(4πε)2h̄2], and lengths are given in
terms of the exciton Bohr radius, a∗

0 = 4πεh̄2/(μe2), where
μ = memh/(me + mh) is the reduced mass of electron-hole
pairs, with me and mh being the electron and hole masses,
respectively.

Let r̃i = ri/a
∗
0 . Then Eq. (16) can be written as⎡

⎣−
∑

i

μ

mi

∇̃2
i +

∑
i>j

2qiqja
∗
0

e2r∗
V

(
r̃ij a

∗
0

r∗

)⎤⎦ψ = Eψ, (17)

where E = E/R∗
y . Note that μ/mi only depends on the

electron-hole mass ratio σ ≡ me/mh. Hence for a fixed value
of r∗/a∗

0 , the dimensionless energy eigenvalues E only depend
on the mass ratio, not on the absolute masses. Furthermore, for
an exciton we may write the Schrödinger equation in terms of
the difference coordinate reh as[

−∇̃2
eh − 2a∗

0

r∗
V

(
r̃eha

∗
0

r∗

)]
ψ = EXψ, (18)

so that for a given value of r∗/a∗
0 , the dimensionless exciton

energy eigenvalues EX are also independent of the mass ratio.
For the case of the Coulomb interaction (r∗ = 0), the dimen-
sionless ground-state energy of an isolated exciton is EX = −4,
irrespective of the mass of the electron or the hole. The
binding energies in excitonic Rydbergs of donor-bound trions,
biexcitons, and donor-bound biexcitons only depend on r∗/a∗

0
and the electron-hole mass ratio σ . Unfortunately, the energies
of the different complexes go to zero in these units in the limit
that r∗ → ∞, and so a separate set of units is required for the
case of the logarithmic interaction, as discussed in Sec. III B 2.

2. Logarithmic interaction

For the limit r∗ → ∞, where the interaction is of
logarithmic form, we use the dimensionless units introduced
in Ref. [19]. The Schrödinger equation for a charge carrier
complex with the logarithmic approximation to the interaction
[Eq. (14)] is⎡
⎣−

∑
i

h̄2

2mi

∇2
i +

∑
i>j

qiqj

4πεr∗
ln

(
2r∗

exp(γ )r

)⎤⎦ψ = Eψ.

(19)
Let

r0 =
√

4πεr∗h̄2

2e2μ
(20)

and

E0 = e2

4πεr∗
. (21)

Defining dimensionless coordinates r̃i = ri/r0 and a
dimensionless energy E = E/E0, the Schrödinger equation
can be written as

⎧⎨
⎩−

∑
i

μ

mi

∇̃2
i −

∑
i>j

qiqj

e2
[ln(r̃ij ) + ln (r0/r∗) + γ − ln(2)]

⎫⎬
⎭ψ = Eψ. (22)

The only dependence of the dimensionless energy E of the complex on r∗ is through the pairwise additive constant

C = −
∑
i>j

qiqj

e2
ln (r0/r∗). (23)
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Note that

∑
i>j

qiqj

e2
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 for an exciton or donor atom,

−1 for a trion or donor-bound exciton,

−2 for a biexciton or donor-bound trion,

−2 for a donor-bound biexciton,
(n+−n−)2−n+−n−

2 for a complex of n+ charges +e and n− charges −e.

(24)

Hence the additive constant C cancels out of the binding
energies of the different charge-carrier complexes defined in
Sec. III C.

For an isolated exciton, we may write the Schrödinger
equation in terms of the difference coordinate reh and reduced
mass, giving[−∇̃2

eh + ln(r̃eh) + ln (r0/r∗) + γ − ln(2)
]
ψ = EXψ. (25)

The only dependence of the dimensionless energy eigenvalue
EX on the mass ratio and r∗ comes from the constant term
ln(r0/r∗) in the Hamiltonian. Hence we may write the ground-
state dimensionless energy as

EX = EX0 − ln (r∗/r0), (26)

where EX0 = 0.41057747491(7) was evaluated by a finite-
element method (see Sec. V A).

C. Binding energies and spectra of charge-carrier complexes

We define the binding energies Eb
X− , Eb

XX, Eb
D+X, Eb

D0X,
and Eb

D+XX of a trion, biexciton, donor-bound exciton, donor-
bound trion, and donor-bound biexciton, respectively, as
follows:

Eb
X− = EX − EX− , (27)

Eb
XX = 2EX − EXX, (28)

Eb
D+X = ED0 − ED+X, (29)

Eb
D0X = ED0 + EX − ED0X, (30)

Eb
D+XX = ED0X − ED+XX, (31)

where EX, EX− , EXX, ED0 , ED+X, ED0X, and ED+XX are the
ground-state total energies of an exciton, trion, biexciton,
donor atom, donor-bound exciton, donor-bound trion, and
donor-bound biexciton, respectively. These are the binding
energies with respect to dissociation into the most energetically
competitive species. With the exceptions of the donor-bound
exciton (D+X) and donor-bound biexciton (D+XX), each of
the complexes dissociates into an exciton (X) plus one other
complex. Binding energies of charge-conjugated complexes
(such as positive trions, acceptor-bound trions, and acceptor-
bound biexcitons) are defined in an analogous fashion. Note
that, under the definitions of Eqs. (27)–(31), a binding energy
is positive for a bound complex.

The energy difference between the exciton peak in a
photoluminescence experiment and the peak corresponding
to a particular complex is equal to the energy required
to separate a single exciton from that complex. Thus the
energy difference between the exciton peak and the trion

peak is EX − EX− = Eb
X− , the energy difference between the

exciton peak and the biexciton peak is 2EX − EXX = Eb
XX,

and the energy difference between the exciton peak and the
donor-bound trion peak is EX + ED0 − ED0X = Eb

D0X. On the
other hand, the energy difference between the exciton peak and
the donor-bound exciton peak is EX − ED+X = Eb

D+X + EX −
ED0 , and the energy difference between the exciton peak and
the donor-bound biexciton peak is EX + ED+X − ED+XX =
Eb

D+XX + Eb
D0X − Eb

D+X. Some of these peaks are shown in
Fig. 4. In addition there are expected to be offsets to the peak
positions due to the spin splitting of the conduction bands of
TMDCs, as described in Sec. III.

In Sec. V F we report DMC binding energies for quintons
and other large charge-carrier complexes in tungsten and
molybdenum dichalcogenides. In each of these cases the
binding energy is defined to be the energy required to remove
an exciton from the complex; this is the binding energy with
respect to dissociation into the most energetically competitive
products.

D. Contact and exchange interactions between charge carriers

The Mott-Wannier model of a charge-carrier complex is
valid provided the complex extends over many unit cells
of the underlying crystal. However, when charge carriers
are present at the same point in space there is an energy
contribution due to local exchange and correlation effects [25].
Although the excitons in TMDCs are Mott-Wannier-like, their
wave functions only extend over a small number of primitive
unit cells, so that local exchange and correlation effects are
expected to be significant. We may represent this effect within
a Mott-Wannier model by introducing additional pairwise
contact interaction potentials. For example, for a biexciton
the Hamiltonian should include an additional term of the
form

Aeeδ(ree) + Ahhδ(rhh) + Aeh
2∑

i=1

2∑
j=1

δ
(
reihj

)
, (32)

where Aee, Ahh, and Aeh are constants and ree, rhh, and reihj
are

the electron-electron separation, the hole-hole separation, and
the separation of electron i and hole j , respectively. Evaluating
Aee, Ahh, and Aeh by ab initio calculations is challenging,
and so we leave them as free parameters to be determined in
experiments or subsequent ab initio calculations. If we eval-
uate the expectation value of this contact interaction then we
find that the first-order perturbative correction to the total en-
ergy can be written as Aehgeh

XX(0) + Aeegee
XX(0) + Ahhghh

XX(0),
where the electron-electron, hole-hole pair, and electron-hole
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FIG. 4. Expected photoemission spectra for (a) MoSe2 and (b) WSe2, showing lines for the different complexes studied in this work. �

and �′ are the quasiparticle band gap and the spin splitting of the conduction band, respectively. The numerical values of �′ are taken from
density-functional-theory calculations with the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional [3]. EX is the total energy of an exciton.
The lines show the frequency relative to the bright exciton peak arising due to the recombination of a single electron-hole pair in each complex;
see Sec. III C. For example, the D0X line shows the frequency relative to the exciton peak of the process D0X → D0 + γ . The trion and
biexciton peaks labeled “SD” arise from semidark complexes, and are offset by 2�′, as explained in Sec. II A; the exciton peak labeled “dark”
arises from the process described in Sec. II B; the other peaks arise from bright complexes. Donor- and acceptor-bound exciton peaks are shown
with very low intensity due to the marginal stability of these complexes.

PDFs are

gee
XX(r) = 〈δ(r − ree)〉, (33)

ghh
XX(r) = 〈δ(r − rhh)〉, (34)

geh
XX(r) =

〈
2∑

i=1

2∑
j=1

δ
(
r − reihj

)〉
, (35)

respectively. We report contact PDF data within the Mott-
Wannier model.

In addition to the role of the contact PDF in evaluating
perturbative corrections due to contact interactions, the PDF
and contact PDF contain a wealth of physical information.
The exciton recombination rate of a charge-carrier complex
is proportional to the electron-hole contact PDF. Furthermore,
the PDF gives a very direct indication of the spatial size and
shape of a charge-carrier complex.

The contact PDF also plays a role in the intervalley
scattering of carriers. As the intervalley scattering involves
a large momentum transfer of the order of the inverse lattice
constant, the interaction is short range and can be modeled by
a contact interaction with both carriers in the same position. In
particular, the electron-electron contact PDF for the semidark

trion and biexciton in tungsten-based TMDCs determines the
coupling strength of the dark and bright states as μbd ∝ gee(0)
and hence determines the recombination rates of the semidark
states [33].

IV. COMPUTATIONAL METHODOLOGY

A. Quantum Monte Carlo modeling of excitonic complexes

Our total-energy and PDF calculations were carried out
using the variational quantum Monte Carlo (VMC) and DMC
approaches [34,35]. The ground-state wave function for a
set of interacting, distinguishable particles is nodeless; hence
the fixed-node DMC algorithm is exact for all the systems
studied in this work with the exception of biexcitons with
indistinguishable holes. We used a numerical representation
of the potential of Eq. (12) that is accurate to at least
eight significant figures. Trial wave functions were optimized
using VMC with variance minimization [36,37] and energy
minimization [38]. The DMC calculations were performed
using time steps in the ratio 1 : 4 with the corresponding target
configuration populations being in the ratio 4 : 1. Afterwards,
the energies were extrapolated linearly to zero time step and
hence, simultaneously, to infinite population. To perform all
our calculations, the CASINO code was used [39].
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QMC methods have previously been used to study 2D
trions with nonlocal screening [19,21] and the Coulomb
interaction [22] and 2D biexcitons with the Coulomb inter-
action (including indirect biexcitons in coupled-quantum-well
heterostructures) [17,18,40,41] and in TMDCs with nonlocal
screening [21,23]. In a recent work some of the present authors
have investigated the binding energies of trions and biexcitons
using DMC for a range of susceptibility parameters r∗ and
effective masses, and have represented the DMC data using
simple interpolation formulas [25]. It was shown that for the
applicable range of r∗ values, 2D semiconductors are expected
to show larger trion binding energies than biexciton binding
energies, in contrast to the situation in quasi-2D systems
such as GaAs/InAs quantum wells. Here we extend this work
to include extreme cases and donor/acceptor-bound carrier
complexes.

B. Wave functions for complexes of distinguishable
charge carriers

Our trial wave functions for complexes of distinguishable
charge carriers were of the Jastrow form � = exp[J (R)],
where R is the vector of all the particle coordinates. The
Jastrow exponent J (R) included a pairwise sum of terms of
the form [42].

uex2D(r) = [c1 + �′ ln(r) + c2r]r2

1 + c3r2
(36)

for the Keldysh and logarithmic interactions, where r is
interparticle distance, c1, c2 � 0, and c3 � 0 are optimizable
parameters, and

�′ = − qiqjmimj

2a∗
0μe2r∗(mi + mj )

(37)

for distinguishable pairs of particles of charge qi and qj and
mass mi and mj . Different constants ci are used for each type
of particle pair. This form satisfies the analog of the Kato
cusp conditions [43,44]; i.e., it ensures that the local energy
�−1Ĥ� is nondivergent at coalescence points, where Ĥ is the
Hamiltonian operator.

Where the interaction between the charge carriers was of
Coulomb form, we used pairwise terms of the form

uex2D(r) = �r + c1r
2

1 + c2r
(38)

in the Jastrow exponent, where c1 � 0 and c2 � 0 are
optimizable parameters, and

� = 2qiqjmimj

a∗
0μe2(mi + mj )

(39)

for distinguishable pairs of particles of mass mi and mj and
charge qi and qj . This form satisfies the Kato cusp conditions
[43,44].

Donor ions and other infinitely heavy particles were fixed
point charges in our calculations. In this case uex2D provided a
one-body Jastrow term between the free particles and the fixed
particles that satisfies the Kato cusp conditions. In addition,
cuspless one-body, two-body, and three-body polynomial
terms truncated at finite range were used in our Jastrow factor
[45,46].

C. Wave functions for biexcitons with indistinguishable holes

For biexcitons with indistinguishable holes we used the trial
wave function

� = exp[J (R)]x ′
hh(R), (40)

where J is of the form described in Sec. IV B. For indistin-
guishable particles of mass m and charge q interacting via the
logarithmic or Keldysh interactions, Eq. (37) must be replaced
by �′ = −q2m/(8a∗

0μe2r∗), while for indistinguishable pairs
of particles interacting via the Coulomb interaction, Eq. (39)
must be replaced by � = q2m/(2a∗

0μe2). x ′
hh is the x compo-

nent of

r′
hh = rhh + ηhh(rhh)rhh + ηeh

(
re1h1

)
re1h1 + ηeh

(
re1h2

)
re1h2

− ηeh
(
re2h1

)
re2h1 − ηeh

(
re2h2

)
re2h2 , (41)

where ηhh and ηeh are smoothly truncated polynomials, with
optimizable expansion coefficients, and rhh and reihj

are the
hole-hole and electron-hole relative positions, respectively.
Equation (41) is effectively a backflow [47,48] transformation;
� = exp(J )xhh introduces the correct nodal topology for
the state that we want to consider and Eq. (41) maps
the particle coordinates {r} to quasiparticle coordinates {r′}
without changing the nodal topology. In Eq. (41),

ηhh(r) =
Nhh

η∑
n=2

anr
n(r − L)C�(L − r) (42)

and

ηeh(r) =
N eh

η∑
m=0

bmrm(r − L)C�(L − r) (43)

are smoothly truncated polynomials with optimizable parame-
ters {an} and {bn}. L is a cutoff length, Nhh

η and N eh
η determine

the amount of variational freedom, C = 3 to ensure smooth
behavior at the cutoffs, and � denotes the Heaviside function.
We require b1 = Cb0/L to ensure that η does not affect the
Kato cusp conditions, which are enforced by the Jastrow factor.
We optimized the free parameters in our antisymmetric wave
function using energy minimization [38].

For different values of Nhh
η and N eh

η in Eqs. (42) and (43), we
compare the VMC ground-state energy, variance, and DMC
energy of biexcitons with indistinguishable electrons inter-
acting via the logarithmic interaction in Table II. Analogous
results for biexcitons interacting via the Keldysh interaction at
finite r∗ are shown in Table III. Our results show that increasing
Nhh

η and N eh
η slightly decreases the variances; nevertheless,

the VMC and DMC energies are independent of the number
of free parameters when Nhh

η ,N eh
η � 2 to within our statistical

error bars. We have used Nhh
η = N eh

η = 3 in our production
calculations.

Biexcitons with distinguishable electrons and indistin-
guishable holes can trivially be mapped onto biexcitons
with indistinguishable electrons and distinguishable holes by
charge conjugation.
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TABLE II. Effect of changing the number of free parameters in
η [i.e., the values of Nhh

η and N eh
η in Eqs. (42) and (43)] on the VMC

ground-state energy (EVMC), VMC energy variance, and DMC energy
(EDMC) for biexcitons with indistinguishable holes interacting via the
logarithmic interaction. The mass ratio is σ = 0.1 and the reduced
mass is μ = 0.5m0, where m0 is the bare electron mass. In each case
r∗ = r0.

N hh
η = N eh

η EVMC (E0) Variance
(
E2

0

)
EDMC (E0)

2 0.7604(3) 0.00920 0.7585(2)
3 0.7602(3) 0.00908 0.7584(2)
4 0.7605(3) 0.00914 0.7579(2)
6 0.7606(3) 0.00927 0.7580(2)

D. Time-step and population-control errors

We chose our DMC time steps such that the root-mean-
square distance diffused by each particle in a single time step
was much less than r0 for the logarithmic interaction, much
less than a∗

0 for the Coulomb interaction, and much less than
min{r0,a

∗
0} for the Keldysh interaction at finite r∗. In Fig. 5 we

plot the DMC total energy of a biexciton with distinguishable
particles against time step. The figure confirms that the linear
extrapolation scheme described in Sec. IV A largely eliminates
the effects of time-step bias, provided the time steps used are
sufficiently small. For the logarithmic interaction with σ = 1
and r∗ = r0, the time step should evidently be rather less than
0.04h̄/E0.

Figures 6 and 7 show similar time-step tests performed for
a negative trion and a donor-bound biexciton with the Keldysh
interaction. For r∗ � 0.25a∗

0 , one should use time steps of
less than 0.01h̄/R∗

y to be in the linear time-step bias regime,
while for r∗ < 0.25a∗

0 , time steps of less than 0.0025h̄/R∗
y are

required.

E. PDF calculations

The PDFs defined in Sec. III D were evaluated by bin-
ning the interparticle distances sampled in VMC and DMC
calculations. The errors in the VMC and DMC PDFs are
linear in the error in the trial wave function; however, the

TABLE III. Effect of changing the number of free parameters in
η [i.e., the values of Nhh

η and N eh
η in Eqs. (42) and (43)] on the VMC

ground-state energy (EVMC), VMC energy variance, and DMC energy
(EDMC) of biexcitons with indistinguishable holes interacting via the
Keldysh interaction, with an electron-hole mass ratio of σ = 0.1.
r∗ = 0 corresponds to the Coulomb interaction.

r∗/a∗
0 N hh

η = N eh
η EVMC (R∗

y ) Variance
(
R∗

y
2
)

EDMC (R∗
y )

0 2 −8.608(1) 0.1709 −8.6100(4)
0 3 −8.608(1) 0.1658 −8.6112(4)
0 4 −8.606(1) 0.1718 −8.6108(4)
0 6 −8.608(1) 0.1719 −8.6108(4)
8 2 −0.6304(1) 0.0008 −0.6308(1)
8 3 −0.63020(8) 0.0007 −0.6306(2)
8 4 −0.6301(1) 0.0007 −0.6308(1)
8 6 −0.63024(8) 0.0007 −0.6309(1)
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FIG. 5. DMC ground-state (GS) energy of a biexciton with
distinguishable particles at mass ratio σ = 1 against time step,
with the logarithmic interaction between charges. The configuration
population was varied in inverse proportion to the time step. The
reduced mass is μ = 0.5m0 and r∗ = r0.

error in the extrapolated estimate (twice the DMC estimate
minus the VMC estimate) is quadratic in the error in the
trial wave function [49]. Our reported PDFs were obtained
by extrapolated estimation.

Contact PDF data have been calculated by extrapolating
electron-hole and electron-electron PDFs to zero separation
for each r∗ value and mass ratio considered. To perform the
extrapolation we fitted exp[g̃(r)] to our PDF data at short range
[50], where

g̃(r) = a′
0 + 2�′r2 ln(r) + a′

2r
2 + a′

3r
3 + · · · + a′

6r
6 (44)

for the Keldysh and logarithmic interactions and

g̃(r) = a0 + 2�r + a2r
2 + · · · + a6r

6 (45)

for the Coulomb interaction (r∗ = 0), where �′ and � are
defined in Eqs. (37) and (39) and a′

0, a′
2, ..., a′

6 and a0, a2, ...,
a6 are fitting parameters. These forms satisfy (the analog of)
the Kimball cusp conditions [51]. The model functions were
fitted to our PDF data at small r , with the data being weighted
by 2πr .

FIG. 6. DMC ground-state (GS) energy of a negative trion at
mass ratio σ = 1 and r∗ = 0.5a∗

0 against time step, with the Keldysh
interaction between charges. The configuration population was varied
in inverse proportion to the time step.
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FIG. 7. DMC ground-state (GS) energy of a donor-bound biexci-
ton at σ = 0.3 and r∗ = 0.077a∗

0 against time step, with the Keldysh
interaction between charges. The configuration population was varied
in inverse proportion to the time step.

F. Sensitivity of binding energy to the form
of screened interaction

We have investigated whether the approximation to the
Keldysh interaction given in Eq. (15), which has been
used in previous QMC studies of excitonic complexes [21],
leads to significant errors. For an exciton with r∗ = a∗

0/2,
the DMC total energies are EX = −1.5358899(2)R∗

y and
−1.4668074(3)R∗

y with the Keldysh interaction [Eq. (12)] and
the approximate Keldysh interaction [Eq. (15)], respectively.
This is a difference of about 4.5%, which is small but non-
negligible. The DMC binding energies of trions with r∗ = a∗

0/2
and mass ratio σ = 1 using the exact and approximate Keldysh
interactions are 0.1377(4)R∗

y and 0.1335(3)R∗
y , respectively, so

the error in the binding energy due to the approximate Keldysh
interaction is about 3%. Since these errors are easily avoidable,
we have used the exact Keldysh interaction in our production
calculations.

V. NUMERICAL RESULTS

A. Excitons

The exciton ground-state energy is presented in Fig. 8. Our
DMC data are in agreement with the results of finite-element

FIG. 8. Exciton ground-state (GS) energy evaluated using DMC
and a finite-element method. The plot also shows the approximations
to the ground-state energy obtained by first-order perturbation theory
about the Coulomb limit (green) and by using the logarithmic
approximation to the Keldysh potential (red).

calculations as implemented in the Mathematica software [52].
In excitonic units, the energy of an exciton is independent of
the effective masses; see Sec. III B. In the Coulomb limit, one
recovers the well-known excitonic energy of −4R∗

y . We can
determine the behavior of the energy near the Coulomb limit
by evaluating the first-order perturbative correction

〈�v〉
R∗

y

= 32r∗(a∗
0 + 4r∗)

(a∗
0 )2 + 16r2∗

− 128a∗
0r2

∗ [csch−1(4r∗/a∗
0 ) + sinh−1(4r∗/a∗

0 )]

[(a∗
0 )2 + 16r2∗ ]3/2

≈ 32r∗/a∗
0 + O((r∗/a∗

0 )2), (46)

where �v = vKeldysh − vCoulomb is the difference between the
Keldysh potential of Eq. (12) and the Coulomb potential of
Eq. (13), and the expectation value is taken with respect to the
exact ground-state wave function for the Coulomb interaction
� = exp(−2r/a∗

0 ). The correction is shown in Fig. 8 as a green
line.

We have numerically evaluated the dimensionless constant
EX0 in Eq. (26) to be EX0 = 0.41057739(7) using DMC and
EX0 = 0.41057747491(7) using the finite-element method.
These results confirm the expected accuracy of the DMC
method. The logarithmic-limit behavior from Eq. (26) is
also shown in Fig. 8 (red line) and matches the DMC data
near r∗ → ∞. The difference �EX/E0 between the exciton
energies in units of E0 with the Keldysh and logarithmic
interactions at large r∗ was calculated numerically. Using the
optimized ground-state wave function for the logarithmic in-
teraction, we used VMC to evaluate the first-order perturbative
approximation �EX/E0 ≈ 〈vKeldysh − vlogarithmic〉. The results
are presented in Fig. 9 and show that the leading-order error
in the exciton energy due to the logarithmic interaction goes
as
√

a∗
0/r∗.

We fitted the function

EX

R∗
y

=
(1 − y)

[−4 + 33y + a1y
3/2

+∑5
k=2 aky

k + ln(1 − y)

]
1 + (1 − y)y3(b1 + b2y)

, (47)

with a5 = −29 + 2EX0 − a1 − a2 − a3 − a4 − ln 2, to our
DMC exciton energy data, where y = r∗/(a∗

0 + r∗) and the

FIG. 9. Difference of dimensionless exciton energies with the
Keldysh interaction and the logarithmic approximation to the Keldysh
interaction, calculated using first-order perturbation theory within
VMC. The solid line is a fit of a

√
a∗

0/r∗ to the VMC data, with
a = 0.871(2).
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FIG. 10. PDF of an exciton with σ = 0.3 and r∗ = 6.15a∗
0 . The

contact PDF is extracted by fitting the numerical results to Eq. (44).

remaining {ai} and {bi} are six free fitting parameters. The
fractional error in the fit of Eq. (47) to our DMC data is
everywhere less than 0.5%.

Contact PDFs were extracted as described in Sec. IV E.
An example of a fit to Monte Carlo–sampled PDF data is
shown in Fig. 10, and our contact PDF results are shown in
Fig. 11(a). In all our plots of contact PDFs the statistical error
bars from the Monte Carlo calculation are smaller than the
symbols. Unlike the DMC mixed estimate of the energy, the
extrapolated estimate of the PDF depends on the stochastically
optimized trial wave function and hence in some cases slight
noise in the g(0) data is visible.

In the Supplemental Material [53] we provide a program for
evaluating our fit to the total energy of an exciton [Eq. (47)],
as well as fits to the binding energies of biexcitons, trions,

FIG. 11. (a) Electron-hole contact PDFs of an exciton (in black)
and a negative trion (in color). (b) Electron-electron contact PDFs
of a negative trion. These data were presented in Ref. [25], and are
shown here for completeness.

donor-bound excitons, donor-bound trions, and donor-bound
biexcitons. In addition, the program reports fits to contact PDFs
for the different clusters.

B. Biexcitons

1. Binding energies

We compare the stability of biexcitons with distinguishable
and indistinguishable holes in the limit of the Coulomb inter-
action (r∗ = 0) in Fig. 12(a) and at r∗ = 8a∗

0 in Fig. 12(b). We
find that biexcitons with indistinguishable holes are unbound
for σ � 0.3, while biexcitons consisting of distinguishable
particles are bound at all mass ratios. The binding energies at
σ = 0 are obtained using the Born-Oppenheimer potentials as
a function of heavy-hole separation r plotted in Fig. 13. We
fitted U (r) = α + β

√
r + γ r + δr2, where α, β, γ , and δ are

FIG. 12. DMC binding energies of biexcitons with distinguish-
able electrons and distinguishable holes and biexcitons with distin-
guishable electrons and indistinguishable holes against mass ratio σ

with (a) the Coulomb interaction (r∗ = 0), (b) the Keldysh interaction
with r∗ = 8a∗

0 , and (c) the logarithmic interaction [Eq. (14)] between
charge carriers.
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FIG. 13. DMC Born-Oppenheimer potential energy of a heavy-
hole biexciton with distinguishable electrons against the hole separa-
tion for (a) the Keldysh interaction with r∗ = a∗

0 , 2a∗
0 , 4a∗

0 , 6a∗
0 , and

8a∗
0 ; and (b) the logarithmic interaction between charge carriers. The

zero of the Born-Oppenheimer potential energy in the plot is twice
the isolated exciton energy.

fitting parameters, to our DMC data to find the minimum and
the curvature about the minimum of the Born-Oppenheimer
potential. For the logarithmic interaction we fitted U (r) =
ζ + η exp(−r/d) + κ ln(r) to our data, where ζ , η, d, and κ

are fitting parameters. The Born-Oppenheimer approximation
in Fig. 12(b) for heavy holes is in agreement with our DMC
calculations at small σ . Analogous results obtained with the
logarithmic interaction are shown in Fig. 12(c). For σ � 0.2,
only biexcitons with distinguishable holes are stable. Hence
it is only at extreme mass ratios, where exchange effects
between the heavy particles are negligible, that biexcitons with
indistinguishable particles are stable.

Figure 14 shows DMC binding energies for biexcitons
with distinguishable particles interacting via the Keldysh
interaction as a function of x = σ/(1 + σ ) and rescaled
in-plane susceptibility y = r∗/(a∗

0 + r∗). Our results are in
agreement with path-integral Monte Carlo (PIMC) data at
finite r∗, as shown in Fig. 15 [20]. However, the PIMC data
obtained by Velizhanin and Saxena have much larger statistical
errors and they quoted a previous DMC result [54] at r∗ = 0
due to the infeasibility of PIMC in this case. The function

Eb
XX

R∗
y

= (1 − y)
∑

i,j aij [xi/2 + (1 − x)i/2]yj

1 +∑
i,j bij [xi/2 + (1 − x)i/2]yj

(48)

FIG. 14. (a) DMC binding energies of biexcitons with dis-
tinguishable particles against rescaled susceptibility r∗/(a∗

0 + r∗).
(b) DMC binding energies of biexcitons with distinguishable particles
against rescaled mass ratio σ/(1 + σ ). (c) DMC binding energies of
biexcitons with distinguishable particles against rescaled suscepti-
bility and rescaled mass ratio. The DMC results for distinguishable
particles were reported in Ref. [25].

containing 17 fitting parameters {aij } and {bij } was fitted to
our DMC binding-energy data, giving a fractional error of less
than 1.5% everywhere. This choice of fitting function exhibits
the correct behavior as σ → 0, as derived in Appendix B 1,
and is also invariant under charge conjugation (me ↔ mh).
Equation (48) accurately reproduces the DMC biexciton bind-
ing energies over the whole space of possible susceptibility
and mass-ratio parameters, unlike the simple fitting functions
reported in Ref. [25]. The latter are by construction only valid
in the currently experimentally relevant region and, because of
the relative simplicity of the fitting function, give significantly
larger fractional errors (up to 5%) than Eq. (48). The fitted
binding energy can be evaluated using the program supplied
in the Supplemental Material [53]. Binding-energy results in
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FIG. 15. Binding energies of biexcitons with distinguishable
particles of equal mass (σ = 1) against rescaled susceptibility
r∗/(a∗

0 + r∗), as calculated using DMC [25] and PIMC [20].

the limit of large r∗, where the interaction is of logarithmic
form, are given in Sec. V G.

In Table IV, we compare the DMC binding energies of
biexcitons in monolayer TMDCs with experiment and with
previous theoretical works. Our DMC binding energies are in
good agreement with previous DMC binding energies where
available [21] and also with PIMC calculations [23]. The small
differences between DMC results in the literature must be due
to the use of different effective masses, etc. Unfortunately,
the theoretical biexciton binding energies are up to three
times smaller than those reported in experimental works
[13,15,16,55]. There is also a striking, qualitative disagreement
with the experimental works regarding the trion and biexciton
binding energies: the Mott-Wannier model with the Keldysh
interaction predicts that the trion has a larger binding energy
than the biexciton [21,25], while the experimental studies
report that the biexciton peak occurs at lower energies than
the trion peak in photoluminescence spectra (i.e., that the
biexciton has a larger binding energy). The theoretical results
are reported for a freestanding monolayer; any screening by
the substrate and environment would further exacerbate the
disagreement with experiment.

The ground-state wave function of a system of distinguish-
able particles is nodeless, and so DMC provides exact solutions
to Mott-Wannier models of excitonic complexes. Hence the
disagreement with experiment regarding the binding energies
of biexcitons in 2D semiconductors could only arise for one or
more of the following four reasons: (i) the 2D Mott-Wannier
model with the Keldysh interaction between charge carriers
is incorrect or incomplete; (ii) the parameters (band effective
masses and r∗ values) used in the model are incorrect; (iii) the
exciton that remains after exciton recombination in a biexciton
is not in its ground state [27]; or (iv) the experimental spectra
have been misinterpreted or the peaks have been misclassified.

As explained in Sec. III D, there should be an additional
contact interaction between charge carriers; however, the
Mott-Wannier model with the Keldysh interaction apparently
provides a good description [21,25] of the energies of excitons
and trions, and there is no obvious reason to believe that contact
interactions should be more important in a biexciton than in
a trion or exciton. Moreover, it is unlikely that the contact
interactions could be responsible for the threefold difference

between the theoretical and experimental biexciton binding
energies.

The second possibility is that the Mott-Wannier model is in
principle correct, but the band effective masses and in-plane
susceptibilities used in the model are incorrect. These are
taken from ab initio calculations, which might not provide
a sufficiently accurate description of the electronic band
structure. However, as shown in Sec. V B 2, the different mass
ratios and in-plane susceptibilities reported in the literature
do not significantly affect the binding energy; in fact the mass
ratios and in-plane susceptibilities would need to be in error by
more than an order of magnitude to explain the difference with
experiment. Finally, if inappropriate model parameters are
responsible for the disagreement with experiment regarding
the biexciton binding energy, it is not clear why the Mott-
Wannier model with the same parameters apparently provides
a good description of excitons and trions.

We believe that the exciton that remains after exciton
recombination in a biexciton is unlikely to be in an excited
state, because the parent biexciton is in its nodeless ground
state, which strongly overlaps with the product of the ground
states of the two daughter excitons.

The misclassification of the experimental results may
offer at least a partial explanation of the disagreement. By
considering the behavior of the photoluminescence emission
intensity, it has been argued that the observed peaks do indeed
correspond to trions and biexcitons [15,16]. However, another
possibility is that they could correspond to charge-carrier
complexes involving donor or acceptor ions. In particular, the
energies required to remove excitons from donor-bound biex-
citons (see Sec. V F) are similar to the experimentally observed
“biexciton” binding energies. If donor-bound biexcitons are
responsible for the experimentally observed “biexciton peak”
then we might expect the intensity of the peak to depend
strongly on the doping of the sample. It is possible that other
large charge-carrier complexes could also contribute to the
spectra.

None of these options offers an entirely satisfactory expla-
nation of the discrepancy. Further experimental and theoretical
modeling work is required in order to understand the excitonic
properties of 2D semiconductors.

2. Sensitivity of binding energies to effective masses and in-plane
dielectric susceptibility

In Table V we compare the DMC binding energies of
biexcitons with distinguishable particles for a variety of
effective masses and in-plane screening lengths obtained by
different first-principles methods. Since a range of masses is
reported in the literature, we have taken the average of the
reported masses that were supposedly obtained using the same
method. The different model parameters in the literature lead
to a spread of about 1 meV in the theoretical binding energies.

The sensitivities of the exciton total energy and the trion
and biexciton binding energies to the model parameters are
reported in Table VI. The energies depend relatively weakly
on the in-plane permittivity r∗; the errors arising from the
uncertainty in the effective mass almost certainly dominate
errors arising from the uncertainty in r∗. The sensitivity of
the exciton energy to the effective masses is an order of
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TABLE V. Comparison of electron and hole effective masses and
r∗ values obtained by different ab initio methods in the literature
[many-body GW calculations, and density functional theory either in
the local density approximation (LDA) or using the Perdew-Burke-
Ernzerhof (PBE) or Heyd-Scuseria-Ernzerhof (HSE06) exchange-
correlation functionals]. Where multiple results are available using a
given method, we have taken the average of the published results. The
reported r∗ values and effective masses are not necessarily obtained
using the same method. We assume that the materials are suspended
in vacuum, i.e., that ε = ε0. The effective masses are reported in units
of the bare electron mass m0. The binding energies Eb

XX are calculated
using Eq. (48). The effective masses and r∗ values shown in bold are
used to evaluate the binding energies reported in Tables IV and VII.

Effective masses

TMDC Method me/m0 mh/m0 r∗ (Å) Eb
XX (meV)

GW [6] 0.35 0.428 38.62 [6] 23.5
G0W0 [5] 0.60 0.54 38.62 [6] 24.2

MoS2 LDA [3,66–70] 0.495 0.576 36.28 [71] 25.5
PBE [3,23,72–74] 0.470 0.575 44.69 [23] 21.1

HSE06 [75] 0.37 0.44 38.62 [6] 23.6

GW [76] 0.38 0.44 51.71 [26] 18.0
G0W0 [5] 0.70 0.55 51.71 [26] 18.7

MoSe2 LDA [3,67,68] 0.59 0.686 39.79 [71] 23.7
PBE [3,23,72,77] 0.546 0.643 53.16 [23] 18.1

G0W0 [5] 0.69 0.66 73.61 [23] 13.4
MoTe2 LDA [68] 0.64 0.78 73.61 [23] 15.5

PBE [77] 0.575 0.702 73.61 [23] 13.4

GW [76] 0.27 0.32 37.89 [26] 23.4
G0W0 [5] 0.44 0.45 37.89 [26] 24.1

WS2 LDA [3,67,68] 0.312 0.422 32.42 [71] 27.7
PBE [3,23,72,77] 0.328 0.402 40.17 [23] 22.6

GW [76] 0.29 0.34 45.11 [26] 20.0
G0W0 [5] 0.53 0.52 45.11 [26] 20.8

WSe2 LDA [3,67,68] 0.36 0.476 34.72 [71] 26.2
PBE [3,23,72] 0.342 0.428 47.57 [23] 19.4

LDA [3] 0.325 0.460 49.56 [71,78] 18.9
WTe2 PBE [79] 0.307 0.51 49.56 [71,78] 19.3

magnitude larger than the sensitivity of the trion binding
energy, which is in turn an order of magnitude larger than the
sensitivity of the biexciton binding energy. To account for the
30–40 meV disagreement with experiment over the biexciton
binding energy the effective masses would have to be more
than an order of magnitude larger than the ab initio values

0 2 4 6 8
r / r

0

0

0.05

0.1

0.15

0.2

0.25

r 02
g X

X
(r

)

e-e, σ = 0.4
e-h, σ = 0.4
h-h, σ = 0.4
e-e, σ = 1
e-h, σ = 1
h-h, σ = 1

FIG. 16. PDF gXX(r) of a biexciton with distinguishable particles
interacting via the logarithmic interaction plotted against interparticle
separation at two different electron-hole mass ratios σ .

reported in Table V and/or the r∗ value would have to be an
order of magnitude smaller. While there is still appreciable
uncertainty in the ab initio effective mass and r∗ values, it
seems very unlikely that both density functional theory and
many-body GW calculations would be in error by more than
an order of magnitude.

3. PDFs

In Fig. 16, we show the PDFs of biexcitons with distinguish-
able particles interacting via the logarithmic interaction for
two different mass ratios, σ = 0.4 and σ = 1. The long-range
biexciton wave function is relatively independent of the mass
ratio. However, at short range the electron-hole PDF shows a
peak near the separation that corresponds to the minimum of
the Born-Oppenheimer potential-energy surface, which gets
more pronounced at extreme mass ratios. As expected, the
physical size of the biexciton is a low multiple of r0.

Figure 17 presents the electron-hole and electron-electron
contact (r = 0) PDFs for a biexciton. Notice that geh

XX ≈ 2geh
X .

Fits to the contact PDFs can be evaluated using the program
supplied as Supplemental Material [53].

C. Trions

The binding energies of negative trions are presented in
Fig. 18. We have fitted the function

Eb
X−

R∗
y

= (1 − y)
∑

i,j aij (1 − x)i/2yj

1 +∑
i,j bij (1 − x)i/2yj

, (49)

TABLE VI. Sensitivity of binding energies to the three parameters that characterize the Mott-Wannier-Keldysh model of excitonic complexes
in 2D semiconductors suspended in vacuum. The derivatives are evaluated using the effective mass and in-plane permittivity parameters reported
in bold for different TMDCs in Table V. m0 is the bare electron mass.

∂EX
∂me

∂EX
∂mh

∂EX
∂r∗

∂Eb
XX

∂me

∂Eb
XX

∂mh

∂Eb
XX

∂r∗
∂Eb

X−
∂me

∂Eb
X−

∂mh

∂Eb
X−

∂r∗
TMDC (meV/m0) (meV/m0) (meV/Å) (meV/m0) (meV/m0) (meV/Å) (meV/m0) (meV/m0) (meV/Å)

MoS2 −240 −160 10 1.2 5.4 −0.56 10 9.2 −0.72
MoSe2 −210 −160 9.9 1.4 4.3 −0.53 8.8 8.7 −0.70
WS2 −310 −220 9.5 2.1 6.7 −0.56 13 12 −0.70
WSe2 −240 −180 7.3 1.6 5.1 −0.41 10 9.6 −0.52
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FIG. 17. Electron-hole contact PDF of a biexciton with distin-
guishable particles against rescaled susceptibility. The black line
indicates twice the exciton electron-hole contact PDF. The inset
shows the electron-electron contact PDF. These data were presented
in Ref. [25], and are shown here for completeness.

where x = σ/(1 + σ ), y = r∗/(r∗ + a∗
0 ), and the {aij } and

{bij } are fitting parameters, to the DMC trion binding energies.
Equation (49) satisfies the limiting behavior described in
Appendix B 2, has 31 free fitting parameters, and the fractional
error in the fit to our DMC data is everywhere less than 1%.
Positive trion binding energies can be obtained by charge
conjugating the corresponding negative trion. The program
included in the Supplemental Material [53] can be used to
evaluate Eq. (49). The resulting trion binding energies for
various TMDCs are shown in Table IV. It can be seen
that, in contrast to the biexciton binding energies, the trion
binding energies are in excellent agreement with the available
experimental results. As shown in Table VI, trion binding
energies are significantly more sensitive to the effective mass
values than biexciton binding energies; nevertheless, the ab
initio effective masses would need to be in error by an
implausibly large amount to change the trion binding energies
by more than a few meV. Binding-energy results in the limit
of large r∗, where the interaction is of logarithmic form, are
given in Sec. V G.

Figures 11(a) and 11(b) present the electron-hole and
electron-electron contact PDFs of trions. The fitting functions
can be found in the program supplied as Supplemental
Material [53].

D. Donor/acceptor-bound excitons

We present the binding energies of donor-bound excitons
in Fig. 19. For σ � 1, the binding energy is close to zero. In
this region, the calculations were especially difficult, since the
complex tends to unbind very easily. Therefore, during the
wave function optimization, the cutoff lengths for the Jastrow
factor were fixed at small values, to force the complex to be
bound. In the limit σ → ∞, the complex is expected to be
unbound (see Appendix B 3), which is consistent with our
results. Indeed, over a broad range of large electron-hole mass
ratios and large r∗ values, the DMC binding energy of the
donor-bound exciton is either zero or extremely small, such
that the binding energy cannot easily be resolved in DMC
calculations. The following 50-parameter fitting formula has a
fractional error that is mostly less than 2% in fits to our DMC

FIG. 18. (a) DMC binding energies of trions with distinguishable
particles against rescaled susceptibility r∗/(a∗

0 + r∗). (b) DMC bind-
ing energies of trions with distinguishable particles against rescaled
mass ratio σ/(1 + σ ). (c) DMC binding energies of trions with
distinguishable particles against rescaled susceptibility and rescaled
mass ratio. These data were presented in Ref. [25], and are shown
here for completeness.

data:

Eb
D+X = (1 − x)2(1 − y)

⎡
⎣∑

i,j

aij x
iyj −

(
4∑

k=0

bky
k

)2√
x

⎤
⎦.

(50)

In this expression x = σ/(1 + σ ) and y = r∗/(a∗
0 + r∗), while

the {aij } are fitting parameters. Our fitting function can be
evaluated using the program in the Supplemental Material
[53]. We summarize our theoretical predictions for the binding
energies of donor/acceptor-bound excitons in various TMDCs
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FIG. 19. (a) DMC binding energies of donor-bound excitons with
against rescaled susceptibility r∗/(a∗

0 + r∗). (b) DMC binding ener-
gies of donor-bound excitons against rescaled mass ratio σ/(1 + σ ).
(c) DMC binding energies of donor-bound excitons against rescaled
susceptibility and rescaled mass ratio.

FIG. 20. Electron-hole contact PDF of a donor-bound exciton.
The solid lines were obtained using the fitting function reported in
the Supplemental Material [53].

in Table VII. Binding-energies in the limit of large r∗,
where the interaction is of logarithmic form, are given in
Sec. V G.

We have also calculated the electron-hole contact PDFs of
donor-bound excitons, which are presented in Fig. 20. Our
results confirm that the contact PDFs decrease to zero as σ →
∞, as expected, because the light hole becomes unbound in
this limit. Contact PDFs can be evaluated using the program
supplied as Supplemental Material [53].

E. Donor/acceptor-bound trions

Figure 21 presents the binding energies of donor-bound
trions. We have devised the following 30-parameter fitting
formula:

Eb
D0X

R∗
y

= (1 − y)
[∑

i,j aij x
iyj + b0(1 − y) x

1−x
− b1

√
x
]

1 +∑
i,j cij xiyj

,

(51)
which includes the correct divergence as σ → ∞ and appro-
priate square-root behavior for the heavy-hole limit σ → 0
(see Appendix B 4). The {aij }, {bi}, and {cij } are fitting
parameters. The fractional error in the fit to our DMC data
is less than 3%. The program in our Supplemental Material
[53] can be used to evaluate Eq. (51). Binding-energy results

TABLE VII. As Table IV (using the r∗ values and effective masses shown in bold in Table V), but for donor atoms (D0), acceptor atoms
(A0), donor-bound excitons (D+X), acceptor-bound excitons (A−X), donor-bound trions (D0X), acceptor-bound trions (A0X), donor-bound
biexcitons (D+XX), and acceptor-bound biexcitons (A−XX). The binding-energy results are our theoretical predictions using Eqs. (50), (51),
and (52), while the energies of donor and acceptor atoms are calculated using Eq. (47) with infinite hole and electron masses, respectively.
Note that the binding energy is defined with respect to dissociation into the most energetically favorable products, which do not always include
an exciton; see the definitions in Sec. III C.

Energy (meV) Binding energy (meV)

TMDC ED0 EA0 Eb
D+X Eb

A−X Eb
D0X

Eb
A0X

Eb
D+XX Eb

A−XX

MoS2 −638.5 −670.1 7.2 2.7 32.4 31.7 51.8 48.0
MoSe2 −636.8 −659.3 6.5 3.2 31.5 31.1 50.8 48.1
MoTe2 −447.8 −443.9 3.9 4.6 17.9 18.0 32.4 32.9
WS2 −606.8 −633.6 6.2 2.7 32.0 31.5 48.6 45.3
WSe2 −542.3 −563.6 5.5 2.6 27.5 27.1 43.4 40.8
WTe2 −519.0 −562.1 7.9 1.6 26.1 25.3 44.0 38.8
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FIG. 21. (a) DMC binding energies of donor-bound trions with
distinguishable particles against rescaled susceptibility r∗/(a∗

0 + r∗).
(b) DMC binding energies of donor-bound trions with distinguishable
particles against rescaled mass ratio σ/(1 + σ ). (c) DMC binding
energies of donor-bound trions with distinguishable particles against
rescaled susceptibility and rescaled mass ratio.

in the limit of large r∗, where the interaction is of logarithmic
form, are given in Sec. V G.

Table VII reports theoretical binding energies for donor-
bound trions with biexciton energies for several real materials.
The binding energy of a donor-bound trion is slightly larger
than the binding energy of a free biexciton. This leads us
to expect two lines close together in the absorption/emission
spectra of TMDCs, one corresponding to biexcitons, and
another at slightly larger energy corresponding to donor-bound
trions.

Contact PDFs for donor-bound trions have been extracted
from our QMC data and are presented in Fig. 22 and in the
Supplemental Material [53].

FIG. 22. Electron-hole contact PDFs of a donor-bound trion
complex. The inset shows electron-electron contact PDFs. The
solid lines were obtained using the fitting function reported in the
Supplemental Material [53].

F. Donor/acceptor-bound biexcitons

Donor-bound biexciton binding energies have also been
calculated and are presented in Fig. 23. A 38-parameter fitting
formula similar to that of a donor-bound trion [Eq. (51)] was
used:

Eb
D+XX

R∗
y

= (1 − y)[
∑

i,j aij x
iyj − b0

√
x + b1x

3/2]

1 +∑
i,j cij xiyj

, (52)

where x = σ/(1 + σ ) and y = r∗/(a∗
0 + r∗), while the {aij },

{bi}, and {cij } are fitting parameters. This gives a fractional
error of less than 3% everywhere when fitted to our DMC data.
Equation (52) can be evaluated using the program supplied as
Supplemental Material [53]. We summarize our theoretical
predictions for the binding energies of donor/acceptor-bound
biexcitons in various TMDCs in Table VII. Binding-energy
results in the limit of large r∗, where the interaction is of
logarithmic form, are given in Sec. V G.

The behavior of a donor-bound biexciton in the limit of
heavy electrons is discussed in Appendix B 5. In the limit
of heavy holes (σ → 0), this complex consists of three fixed
positive particles and two light electrons and thus the question
arises of how the three fixed, positive charges are positioned
with respect to each other. The most natural position that three
positive particles would assume is an equilateral triangle. To
check whether this assumption is correct we first determined
how the Born-Oppenheimer potential energy changes if we
distribute the three positive charges in the corners of equilateral
triangle and then vary the triangle side. Figure 24 shows the
case of r∗/a∗

0 = 1 as an example. After finding the side length
that minimizes the Born-Oppenheimer potential energy, we
changed the position of one of the positive particles (fixing
the remaining two) and again observed the effect on the
Born-Oppenheimer potential energy. Figure 25 presents the
results, which clearly show that the equilateral triangle is
a local minimum of the Born-Oppenheimer potential-energy
surface.

Closely related to donor-bound biexcitons are five-carrier
complexes known as charged biexcitons or quintons (XX−, i.e.,
e−e−e−h+h+). In molybdenum and tungsten dichalcogenides
these consist of two distinguishable holes with opposite spin
and valley indices, and three distinguishable electrons that
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FIG. 23. (a) DMC binding energies of donor-bound biexcitons
with distinguishable particles against rescaled susceptibility r∗/(a∗

0 +
r∗). (b) DMC binding energies of donor-bound biexcitons with distin-
guishable particles against rescaled mass ratio σ/(1 + σ ). (c) DMC
binding energies of donor-bound biexcitons with distinguishable
particles against rescaled susceptibility and rescaled mass ratio.

differ in either their spin or their valley indices; see Fig. 1(a).
The binding energy of a quinton is defined as the energy
required to split it into a free exciton and a free trion [80]. Other
possible large complexes are donor-bound double-negative
excitons (D−X, i.e., D+e−e−e−h+), donor-bound quintons
(D0XX, i.e., D+e−e−e−h+h+), and even donor-bound double-
negative biexcitons (D−XX, i.e., D+e−e−e−e−h+h+). For
molybdenum and tungsten dichalcogenides there are no further
possibilities; we have exhausted the possible neutral or singly
charged complexes that can be constructed from up to four
distinguishable electrons, up to two distinguishable holes, and
zero or one donor ions. Any larger charge-carrier complexes
in molybdenum or tungsten dichalcogenides inevitably either
include indistinguishable particles or involve the much larger
energies required to excite holes in the lower spin-split

FIG. 24. Born-Oppenheimer potential energy of a complex of
three positive, fixed ions and two electrons, with the positive ions
placed at the corners of an equilateral triangle. Example for r∗/a∗

0 = 1.

valence bands. In Table VIII we present our DMC binding-
energy results for quintons and the other large complexes.

FIG. 25. (a) Born-Oppenheimer potential energy of a complex of
three positive, fixed ions and two electrons. We fix two of the ions
and change the position of the third one. Example for r∗/a∗

0 = 1.
(b) Vertex of the triangle of fixed, positive charges in greater detail.
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Donor-bound double-negative biexcitons appear to be unstable
to dissociation into free excitons plus donor-bound double-
negative excitons, and hence are not included in Table VIII.
As with donor-bound biexcitons, the energies required to
remove excitons from the larger complexes such as quintons
are relatively close to the experimentally observed biexciton
binding energies.

Figure 26 presents the contact PDFs of a donor-bound
biexciton, which are also reported in the Supplemental
Material [53].

G. Complexes with the logarithmic interaction

We have also studied complexes of distinguishable particles
interacting with the purely logarithmic form of Eq. (14). The
binding energies are presented in Fig. 27. The lines shown
in Fig. 27 were obtained using Eqs. (47), (48), (49), (50),
(51), and (52). To convert from excitonic units to logarithmic
units we multiply the fitting function by R∗

y/E0 = r∗/(2a∗
0 ) =

FIG. 26. (a) Electron-hole contact PDFs of a donor-bound biex-
citon. For comparison, the black line indicates twice the exciton
contact PDF. (b) Electron-electron and (c) hole-hole contact PDFs
of a donor-bound biexciton. The solid lines were obtained using the
fitting function reported in the Supplemental Material [53].

TABLE VIII. Binding energies of larger charge-carrier com-
plexes in different TMDCs. Binding energies are presented for
quintons (XX−), which dissociate into excitons (X) and negative
trions (X−); donor-bound double-negative excitons (D−X), which
dissociate into excitons (X) and negative donor ions (D−); and
donor-bound quintons (D0XX), which dissociate into excitons (X)
and donor-bound trions (D0X). The binding energies were evaluated
using the effective mass and in-plane permittivity parameters reported
in bold in Table V. The fitting functions of Eqs. (49) and (51) were
used to evaluate the energies of negative donor ions and donor-bound
trions.

Binding energy (meV)

TMDC XX− D−X D0XX

MoS2 58.6(6) 84.4(4) 61.6(6)
MoSe2 57.0(4) 57.9(2) 56.9(9)
MoTe2 33.8(3)
WS2 57.4(3) 59.2(4) 58.2(6)
WSe2 52.5(7) 51.3(4) 51(1)
WTe2 47.5(3)

y/(2 − 2y) and take the limit that r∗ → ∞, i.e., that y → 1.
For complexes that have been studied previously, our results
are in good agreement with earlier exact calculations [19].

VI. CONCLUSIONS

In summary, we have discussed the different types of
biexcitons and trions that can be observed in molybdenum
and tungsten dichalcogenides. Furthermore, we have presented
statistically exact DMC binding-energy data for biexcitons, tri-
ons, donor/acceptor-bound trions, and donor/acceptor-bound
biexcitons in 2D semiconductors, including an analysis of
extreme mass ratios. We have shown that biexcitons with
indistinguishable charge carriers are unstable at experimen-
tally relevant electron-hole mass ratios. Our calculations
have used the effective interaction between charge carriers

FIG. 27. DMC binding energies of negative trions (X−), biexci-
tons (XX), donor-bound excitons (D+X), donor-bound trions (D0X),
and donor-bound biexcitons (D+XX). Particles in the complexes
interact via the logarithmic interaction. The X− data were presented
in Ref. [19], and are shown here for completeness.
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TABLE IX. Character table for the irreps of the extended point group D′′
3h. The superscript (±) denotes the transformation under the σh

operation and ′ denotes representations with nontrivial transformation under translation.

D′′
3h E 2t 2C3 2tC3 2t2C3 9tσv σh 2tσh 2S3 2tS3 2t2S3 9tC ′

2

A+
1 1 1 1 1 1 1 1 1 1 1 1 1

A+
2 1 1 1 1 1 −1 1 1 1 1 1 −1

A−
1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 1

A−
2 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1

E+ 2 2 −1 −1 −1 0 2 2 −1 −1 −1 0

E− 2 2 −1 −1 −1 0 −2 −2 1 1 1 0

E′+
1 2 −1 −1 2 −1 0 2 −1 −1 2 −1 0

E′−
1 2 −1 −1 2 −1 0 −2 1 1 −2 1 0

E′+
2 2 −1 2 −1 −1 0 2 −1 2 −1 −1 0

E′−
2 2 −1 2 −1 −1 0 −2 1 −2 1 1 0

E′+
3 2 −1 −1 −1 2 0 2 −1 −1 −1 2 0

E′−
3 2 −1 −1 −1 2 0 −2 1 1 1 −2 0

arising from screening effects in such materials. We have
also presented contact PDF data that allow the investigation
of additional contact interaction energies between charge
carriers in 2D semiconductors within first-order perturbation
theory. Our work provides a complete reference for the
interpretation of spectral lines in photoabsorption and pho-
toluminescence experiments on monolayer TMDCs in terms
of a model of charge carriers moving within the effective mass
approximation.

A broad range of theoretical works on 2D biexciton
binding energies show excellent quantitative agreement with
each other, but an enormous, threefold disagreement with
experiment. By contrast, for trions there is good agreement
between theory and experiment. We have considered and
discounted various possible deficiencies in the theoretical
models of charge-carrier complexes. We believe that the most
likely explanation for the disagreement with experiment is a
misinterpretation or misclassification of experimental optical
spectra. In particular, we note that the energies required to
remove excitons from donor-bound biexcitons are similar to
the binding energies of experimentally observed biexcitons,
suggesting that larger charge-carrier complexes could be
responsible for the observed peak ascribed to biexcitons.
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APPENDIX A: CHARACTER AND PRODUCT TABLES FOR
THE D′′

3h SYMMETRY GROUP

Character and product tables for the D′′
3h symmetry group

of TMDCs are given in Tables IX and X.

APPENDIX B: MOLECULAR ANALOGIES AND
BEHAVIOR OF BINDING ENERGIES AT EXTREME

MASS RATIOS

1. Biexcitons

In the limit that the hole mass is large, a biexciton resembles
a 2D H2 molecule, and we may use the Born-Oppenheimer
approximation [22]. The leading-order biexciton total energy
is given by the minimum of the Born-Oppenheimer potential
energy U (r), where r is the exciton-exciton separation, plus the
harmonic zero-point energy of the exciton-exciton vibrations.

TABLE X. Product table of the extended point group D′′
3h. The

relevant classification of the irreps according to Cs = {I,σh}, denoted
by the superscript ± in Table IX, is included for a given product by
using + ⊗ + = +, + ⊗− = −, and − ⊗ − = + and noting that all
irreps in a given direct sum have the same Cs classification.

⊗ A1 A2 E E′
1 E′

2 E′
3

A1 A1 A2 E E′
1 E′

2 E′
3

A2 A2 A1 E E′
1 E′

2 E′
3

E E E A1 ⊕ A2 ⊕ E E′
2 ⊕ E′

3 E′
1 ⊕ E′

3 E′
1 ⊕ E′

2

E′
1 E′

1 E′
1 E′

2 ⊕ E′
3 A1 ⊕ A2 ⊕ E′

1 E ⊕ E′
3 E ⊕ E′

2

E′
2 E′

2 E′
2 E′

1 ⊕ E′
3 E ⊕ E′

3 A1 ⊕ A2 ⊕ E′
2 E ⊕ E′

1

E′
3 E′

3 E′
3 E′

1 ⊕ E′
2 E ⊕ E′

2 E ⊕ E′
1 A1 ⊕ A2 ⊕ E′

3

075431-21



E. MOSTAANI et al. PHYSICAL REVIEW B 96, 075431 (2017)

Higher-order corrections to the energy arise from vibrational
anharmonicity.

Consider a biexciton in which the charge carriers inter-
act via the Keldysh interaction. Let U(r/a0) be the Born-
Oppenheimer potential energy in Rydberg units for the
case that the electron mass me is finite but the hole mass
mh is infinite. Then, at finite electron and hole masses,
the Born-Oppenheimer potential is U (r) = U(r/a0)Ry where
Ry = mee

4/[2(4πε)2h̄2] = (me/μ)R∗
y is the Rydberg and

a0 = 4πεh̄2/(mee
2) = (μ/me)a∗

0 is the Bohr radius. Note that
U(r/a0) does not depend on the electron or hole mass.

Near the minimum of the potential rmin we may write

U (r) ≈ Umin + 1

2
U ′′

min(r − rmin)2

≡ Umin + 1

2

mh + me

2
ω2(r − rmin)2, (B1)

where (me + mh)/2 is the reduced mass of the two exci-
tons, Umin = UminRy is the minimum of potential, U ′′

min =
U ′′

minRy/a
2
0 is the second derivative of the potential at the

minimum, and

ω =
√

2U ′′
min

mh + me
=
√

2RyU ′′
min

a2
0(mh + me)

. (B2)

The resulting ground-state energy in the harmonic approx-
imation is

E ≈ Umin + h̄ω/2

≈
[
Umin +

√
U ′′

minme

mh

]
R∗

y , (B3)

where we have used mh  me in the last step. This suggests
that a suitable fitting function for the binding energy of a
biexciton with small σ ≡ me/mh is a polynomial in powers
of

√
σ . Similar conclusions hold for the case where the

interaction between the charge carriers is logarithmic.
In the limit of heavy holes, the total energies of biexcitons

with distinguishable and indistinguishable holes are identical,
because exchange effects become negligible as the heavy holes
localize. Hence a biexciton with indistinguishable holes must
be bound when the hole mass is sufficiently large. Likewise,
a biexciton with indistinguishable electrons has the same total
energy as a biexciton with distinguishable electrons in the limit
that the electron mass is large.

2. Negative trions

In the limit of heavy holes (σ → 0), a negative trion
resembles a 2D H− ion. The leading-order correction to the
energy of an infinite-hole-mass negative trion is therefore
due to the reduced-mass and mass-polarization perturbative
corrections encountered in atomic physics, each of which gives
a contribution to the energy that is linear in the electron-hole
mass ratio σ .

In the limit of heavy electrons (σ → ∞), a negative trion
resembles a charge-conjugated 2D H+

2 ion, and hence one
can use the Born-Oppenheimer and harmonic approximations,
as was done in Appendix B 1. The binding energy near the
extreme mass limit varies as the square root of the mass ratio σ .

3. Donor-bound excitons

A donor-bound exciton in the limit of heavy holes is a
charge conjugate of a negative trion with heavy electrons, and
therefore will have a binding energy that varies as the square
root of the mass ratio σ .

In a donor-bound exciton with heavy electrons, the positive
donor ion and the heavy electron overlap, so the light hole is
unbound. Therefore the binding energy in this limit is zero.

4. Donor-bound trions

The Born-Oppenheimer potential energy curve of a donor-
bound trion with a heavy hole is the same as that of a biexciton,
but this time the reduced mass is simply equal to the exciton
mass. The binding energy varies as the square root of the mass
ratio σ .

Now consider a donor-bound trion with two heavy electrons
and a light hole. If the hole is very much lighter than the
electrons then the hole will be extremely delocalized and
will see the positive donor ion and two electrons (D−) as a
fixed, negative point charge; the system therefore resembles
an acceptor atom in which the hole is bound to a fixed,
negative point charge. Hence ED0X ≈ ED− + EA0 in this limit,
where EA0 is the energy of an acceptor atom. In addition, if
the electron mass is very much larger than the hole mass,
the exciton ground-state energy is EX ≈ EA0 . The binding
energy of a donor-bound trion in the limit that the hole is
much lighter than the electron mass is therefore Eb

D0X = ED0 +
EX − ED0X ≈ ED0 − ED− , which is the electron affinity of a
donor atom. Note that the electron affinity of a donor atom is
equal to the binding energy of a negative trion in the limit of
large hole mass.

The exciton Rydberg goes to zero in the limit that the hole
mass goes to zero; hence the binding energy of a donor-bound
trion in excitonic units goes to infinity as the hole-to-electron
mass ratio goes to zero (σ → ∞).

5. Donor-bound biexcitons

A donor-bound biexciton with two heavy holes resembles
a trihydrogen cation (H+

3 ). This molecular ion is an important
component of the interstellar medium [81], and it is known that
the protons in H+

3 form an equilateral triangle. In Sec. V F we
verify that 2D donor-bound biexcitons with heavy holes also
adopt an equilateral triangular structure, and we calculate the
bond length by minimizing the Born-Oppenheimer potential
energy.

Consider a donor-bound biexciton with two heavy electrons
and two light holes. The binding energy of a donor-bound
biexciton in the limit that the holes (h+

light) are much lighter
than the electrons (e−

heavy) is

Eb
D+XX = ED+e−

heavye−
heavyh+

light
− ED+e−

heavye−
heavyh+

lighth
+
light

≈ EA0 − EA+ , (B4)

which is the hole affinity of an acceptor atom (in the limit of
large electron mass, D+e−e− acts like a fixed negative point
charge). Note that the hole affinity of an acceptor atom is equal
to the binding energy of a positive trion in the limit of large
electron mass.
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Chapter 5

Bound complexes in heterobilayer

TMDCs

5.1 Introduction

Monolayers of different TMDCs stacked on top of each other result in weakly van

der Waals coupled heterobilayers, with the individual layers retaining their electronic

and optical properties, however having new interlayer properties resulting from the

energetic alignment of the conduction and valence band edges, the incommensurability

of the lattice structure and the alignment of the layers. These result in the electrons

and holes to be separated in both real space and momentum space, with the former

reducing the overlap of the electron and hole wave functions, and the latter in particular

suppressing the radiative recombination due to energy and momentum conservation.

Typically, the single layers have an intrinsic n- or p-doping due to impurities in

the samples. These impurities provide deep potential wells, which can capture the

free, long–lived interlayer complexes, resulting in localized complexes. In the work

presented in this chapter we study the heterobilayer system composed of MoSe2 and

WSe2 monolayers. We aim to answer questions regarding the binding energies of these

complexes, the possibility of their radiative recombination and the radiative rates for

direct recombination and with the aid of phonon emission, both for closely aligned

and misaligned layers.

To study these complexes, a proper description of the interaction between the car-

riers, and between carriers and impurities residing in the same or opposite layers is
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required. In particular the monolayer Keldysh interaction used to describe Coulomb

bound complexes in monolayers needs to be modified to describe the combined screen-

ing effects from both layers. We obtain the full interaction for the bilayer system and

use variational and diffusion quantum Monte Carlo calculations to obtain the binding

energies and wave functions of interlayer complexes involving electrons and holes on

opposite layers and donor atoms on one layer. The localized nature of these complexes

implies a spread in momentum space that can overcome the momentum mismatch

between the valleys of the two layers, providing a finite optical matrix element. Using

the appropriate limits for the bilayer interaction for the long range (as compared to

the screening length in the two layers) and short range interaction, we obtain the ra-

diative rates of the simplest complexes at both close alignment, finding ∼ µs−1 rates,

and the asymptotics behaviour for large misalignment using perturbation theory in

the short range interaction between carriers and impurities, finding a strong angular

dependence ∝ θ−8. Finally, the multi-carrier nature of the complexes implies a doping

dependent spectra, which we model and demonstrate.

5.2 Localized interlayer complexes in heterobilayer

transition metal dichalcogenides

The results presented in this chapter are reported in [24]: “Localized interlayer com-

plexes in heterobilayer transition metal dichalcogenides”, arXiv:1802.06005, (2018).

(Submitted to Phys. Rev. B).
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We present theoretical results for the radiative rates and doping-dependent photoluminescence
spectrum of interlayer excitonic complexes localized by donor impurities in MoSe2/WSe2 twisted het-
erobilayers, supported by quantum Monte Carlo calculations of binding energies and wave-function
overlap integrals. For closely aligned layers, radiative decay is made possible by the momentum
spread of the localized complexes’ wave functions, resulting in few µs−1 radiative rates. For strongly
misaligned layers, the short-range interaction between the carriers and impurity provides a finite
radiative rate with a strong asymptotic twist angle dependence ∝ θ−8. Finally, phonon-assisted
recombination is considered, with emission of optical phonons in both layers resulting in additional
weaker emission lines, red-shifted by the phonon energy.

I. INTRODUCTION

Recent advances in the study of two-dimensional (2D)
materials have allowed the realization of van der Waals
(vdW) heterostructures consisting of vertically stacked
2D layers, resulting in unique properties and potential
novel device applications [1–5]. The layers forming these
heterostructures are only weakly bound by vdW forces,
and largely retain their individual characteristic proper-
ties. Yet, the weak interlayer coupling allows the different
properties of various 2D materials to be combined.

One such family of vdW heterostructures are hetero-
bilayers of 2D transition metal dichalcogenides (TMDs),
which have attracted much interest due to their unique
optical properties, dominated by strongly bound exci-
tonic complexes [6, 7] and spin- and valley-dependent
optical selection rules [8, 9]. The most commonly studied
heterobilayers are of the form MoX2/WX2, with X = S
or Se, due to their type-II (staggered) band alignment,
in which the lowest conduction band (CB) edge and the
highest valence band (VB) edge are spatially confined to
different layers [10, 11]. In this configuration, electro-
static interactions between electrons and holes across the
heterostructure result in the formation of interlayer exci-
tonic complexes, whose constituent carriers are spatially
separated in the out-of-plane direction. Optical signa-
tures of these interlayer complexes have been reported in
photoluminescence (PL) experiments [12–14], where new
PL peaks are observed in the spectra of bilayer regions.
These signatures appear at energies below the monolayer
photoemission lines, due to the smaller interlayer band
gap in the staggered band configuration.

Photoemission by free interlayer excitons is limited
by the relative interlayer angle θ and the incommen-
surability of the two TMD lattices δ, resulting in a
momentum-space mismatch ∆K ≈ K

√
δ2 + θ2 between

the conduction- and valence-band edges, as shown in Fig.
2(b). Radiative recombination becomes effectively in-
direct, and thus suppressed by energy and momentum
conservation [15]. These constraints are relaxed when
interlayer excitons and larger excitonic complexes local-

ize about charged defects, such as donor ions, which are
commonly observed as dopants in real samples. For-
mation of these complexes is favored by the long inter-
layer exciton lifetimes resulting from the spatial separa-
tion of their carriers, which allow for their localization
by the deep potential wells provided by the ions. The
spread in momentum space of these localized complexes
opens the possibility for a finite radiative matrix element
M ∝

∫
d2r ei∆K·rΨ(r), where Ψ(r) is the envelope wave

function of the complex.

In this paper, we provide a theory for the radiative
recombination of localized interlayer complexes in TMD
heterostructures of the form MoX2/WX2, where the car-
riers are bound to a donor ion in the MoX2 layer. Fo-
cusing specifically on MoSe2/WSe2, we use variational
and diffusion quantum Monte Carlo (VMC and DMC)
simulations [16, 17] to evaluate the binding energies and
wave-function overlap integrals of complexes involving a
single hole in the WSe2 layer and up to three electrons
in the MoSe2 layer, accounting for bilayer and encapsu-
lation screening effects.

Motivated by the binding energies obtained from our
quantum Monte Carlo (QMC) calculations and PL ex-
periments [18], we study the radiative recombination of
the two simplest such complexes consisting of MoX2 elec-
trons and a single WX2 hole bound to an impurity center:
a donor ion and an exciton (D0

c′hv), and a donor-bound
trion (D0

c′Xvc′). We predict the PL spectrum from these
complexes for well-aligned TMD heterobilayers, and es-
timate the asymptotic behavior of their PL signals in the
regime of strong misalignment based on a perturbative
analysis. Our results indicate a rapid decay of the PL
signals from the most relevant donor-bound interlayer
complexes with the interlayer twist angle (θ), resulting
from the asymptotic behavior Γ ∼ θ−8 of the radiative
rates at strong misalignment. As a consequence, we ex-
pect that optical signatures from these complexes can be
detected only in closely aligned crystals.

The remainder of this paper is organized as follows. In
Sec. II we discuss the model Hamiltonian for the TMD
heterobilayer, describe our approach to calculating its op-
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FIG. 1. (a) Simulated PL spectrum of donor-bound inter-
layer complexes in an aligned (θ = 0) MoSe2/WSe2 bilayer
encapsulated in hBN, for an electron density of ne = 0.9nD,
with nD the donor density. Dashed lines indicate PL from
phonon-assisted recombination. The lines are taken to have
Gaussian shape with width 2σ = 60 meV, and the interlayer
gap is Ẽg = 1.5 eV. The vertical gray dashed line in (a)
and (c) indicates the position of the free interlayer exciton
Xvc′ . (b) Radiative rates of the D0

c′hv (per hole) (solid blue)
and D0

c′Xvc′ (solid red) complexes, and their phonon-assisted
replicas (dashed), in the large and small twist angle (θ) limits.
The rates have a strong angular dependence, with asymptotic
behaviour ∼ θ−8 for radiative decay driven by short-range in-
teractions, and∼ θ−4 for phonon-assisted processes. The gray
lines for intermediate twist angles θ = 2− 6◦ have been inter-
polated by hand. (c) Simulated PL spectrum in the limit of
heavy n-doping, showing the appearance of the donor-bound
trion (D0

c′Xvc′) line when ne > nD. Parameters: nh = 1011

cm−2 and nD = 1013 cm−2.

tical properties, and present our DMC results for the
binding energies of the main interlayer impurity-bound
complexes. In Sec. III we address the PL signatures of
these complexes, assuming good alignment between the
TMD monolayers in the heterostructure, and estimate
the asymptotic behavior of their radiative decay with
twist angle in Sec. IV. We consider the effects of electron-
phonon interactions in Sec. V, and we find that longi-
tudinal optical phonon modes can introduce red-shifted
replicas to the main PL lines. Finally, we estimate the
evolution of the PL spectrum of the two main donor-
bound interlayer complexes with doping in Sec. VI. Our
conclusions are summarized in Fig. 1, and discussed in
Sec. VII.

II. MODEL

A. Electrostatic interactions in a bilayer system

The reduced dimensionality of a monolayer TMD leads
to modified electrostatic interactions between its charge
carriers below a characteristic length scale r∗ = 2πκ/ε
(in Gaussian units), determined by the monolayer’s in-
plane dielectric susceptibility κ, and the (average) dielec-
tric constant ε of its environment [19, 20]. In a TMD het-
erobilayer, further screening effects must be considered.
The resulting interactions between same-layer carriers V
in one layer and V ′ in the other, and the interlayer inter-
action W, have Fourier components (Appendix A)

V(q) =
2π
(
1 + r′∗q − r′∗qe−2qd

)

εq [(1 + r∗q)(1 + r′∗q)− r∗r′∗q2e−2qd]
, (1a)

V ′(q) =
2π
(
1 + r∗q − r∗qe−2qd

)

εq [(1 + r∗q)(1 + r′∗q)− r∗r′∗q2e−2qd]
, (1b)

W(q) =
2π e−qd

εq [(1 + r∗q)(1 + r′∗q)− r∗r′∗q2e−2qd]
, (1c)

where q is the wave vector, d � r∗, r′∗ is the interlayer
distance, and r∗ and r′∗ are the corresponding monolayer
screening lengths.

Previous works on monolayer TMDs have focused on
interactions of the Keldysh form [19] to study their exci-
tonic spectra and optical properties [6, 20–23]. For bilay-
ers, this potential form is obtained from Eqs. (1a)-(1c) in
the long-range limit (q � 1/r∗, 1/r′∗) as

V<(q) = V ′<(q) =
2π

εq [1 + (r∗ + r′∗)q]
, (2a)

W<(q) =
2π

εq [1 + (r∗ + r′∗ + d)q]
. (2b)

By contrast, in the short-range limit (q � 1/r∗, 1/r′∗) we
obtain for the intralayer interactions

V>(q) =
2π

ε r∗q2
, V ′>(q) =

2π

ε r′∗q2
, (3)

revealing the absence of screening from the opposite
layer in this regime. More strikingly, the short-range
interlayer potential vanishes exponentially as W>(q) =
2π e−qd/(ε r∗r′∗q

3). Neither of these features is captured
by extrapolation of Eqs. (2a) and (2b) to large wave num-
bers.

B. Photon emission by donor-bound complexes

As in the monolayer case [24–27], optical properties
of the heterobilayer are determined by excitonic com-
plexes formed by excess electrons and holes in the sam-
ple. Staggered (type-II) band alignment, in which the
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FIG. 2. (a) Schematic of type-II band alignment in a TMD
heterobilayer. The CB and VB of the two layers are shifted
relative to each other by energies ∆c and ∆v, respectively,
giving an interlayer gap of Ẽg. (b) The Brillouin zones (BZs)
of the misaligned TMD monolayers. Their K valleys are sep-
arated by a momentum vector ∆K, due to the nonzero mis-
alignment angle θ and to the difference in lattice constants.

main electron and hole bands belong to opposite layers,
is typical of TMD heterostructures [10]. This is shown
schematically in Fig. 2(a) for a MoX2/WX2 structure,
where X = S or Se represents a chalcogen; the electron
and hole bands are labeled c′ and v, respectively, and the
primed (unprimed) band labels correspond to the MoX2

(WX2) layer. Given the reduced band gap Ẽg [Fig. 2(a)],
the lowest-energy exciton states are spread across the
heterostructure, formed by c′-band electrons and v-band
holes bound by the interaction W(q) [12, 13, 28].

The optical activity of interlayer excitons in TMD
bilayers is strongly constrained by the interlayer align-
ment. As shown in Fig. 2(b), the relative twist angle and
lattice incommensurability between the two layers pro-
duces a mismatch between their Brillouin zones (BZs).
Thus, bright interlayer excitons in MoX2/WX2 struc-
tures, consisting of same-valley c′-band electrons and
v-band holes, have a finite center-of-mass momentum
∆K = K′ − K. Due to energy and momentum con-
servation, photon emission by interlayer excitons is only
allowed when ∆K ≈ 0 [29].

The above restrictions are relaxed when excitons, and
other excitonic complexes are bound to impurity centers
in the sample, such as charged defects and donor ions.
These complexes are localized within some characteristic
length a∗0, known as the exciton Bohr radius, such that
their momentum-space wave functions are finite up to
momenta of order 1/a∗0. As a result, the recombination
rates of impurity-bound interlayer complexes are deter-
mined by the large-momentum tail of their wave function,
and thus by the short-range interaction (3).

The Hamiltonian for the heterobilayer in the free-

carrier basis is

Ĥ = Ĥ0 + Ĥt + Ûintra + Ûinter, (4)

where the zeroth-order Hamiltonian Ĥ0, describing the
CB and VB electrons of the two individual layers, is given
in second quantization as

Ĥ0 =
∑

α

∑

k,τ,σ

Eα(k)c†α,τ,σ(k)cα,τ,σ(k). (5)

c†α,τ,σ(k) creates an electron of spin projection σ =↑, ↓
and momentum k relative to the τK valley (τ = ±) of
band α = c′, v′, c, v. The band dispersions are

Ev′(k) = −∆v −
~2k2

2m′v
, (6a)

Ev(k) = −~2k2

2mv
, (6b)

Ec′(k) = Ẽg +
~2k2

2mc′
, (6c)

Ec(k) = Ẽg + ∆c +
~2k2

2mc
, (6d)

where ∆c (∆v) is the spacing between the electron (hole)
band edges [Fig. 2(a)].

The tunnelling Hamiltonian describing electron hop-
ping between the layers is given by

Ĥt =
∑

τ,σ

∑

G,G′

∑

k,k′

δτK+k+G,τ ′K′+k′+G′

×
{[
tcc(k + K + G)c†cτσ(k)cc′τ ′σ(k′)

+ tvv(k + K + G)c†vτσ(k)cv′τ ′σ(k′)
]

+ H.c.
}
,

(7)

where tcc(k) and tvv(k) are stacking-dependent inter-
layer hopping strengths between the CBs and VBs; G
and G′ correspond to the reciprocal lattice vectors in
the hole and electron layers; and the Kronecker delta en-
forces momentum conservation in the tunnelling process
[30, 31]. We focus on configurations close to AA stack-
ing, and use the hopping terms tαα(k) reported in Ref.
[31]. These values are small (few meV) compared to all
other scales in the problem, reflecting the vdW and elec-
trical quadrupole nature of the interlayer interactions.
As a result, Ĥt can be treated within perturbation the-
ory. Furthermore, since tαα(k) decay rapidly with k [31],
we truncate the sums over G and G′ to only the first
nonzero vectors, and set tcc(k) ≈ tcc = 2.5 meV and
tvv(k) ≈ tvv = 16 meV.

Finally, the direct electrostatic interactions between
carriers, and between carriers and a positive donor ion of
effective charge Zdonor, are given by
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Ûintra =
e2

S

∑

τ1,τ2
σ1,σ2

∑

k1,k2,ξ

[ ∑

α,β=v,c

V(ξ)

(1 + δα,β)
c†α,τ1,σ1

(k1 + ξ)c†β,τ2,σ2
(k2 − ξ)cβ,τ2,σ2(k2)cα,τ1,σ1(k1)

+
∑

α,β=v′,c′

V(ξ)

(1 + δα,β)
c†α,τ1,σ1

(k1 + ξ)c†β,τ2,σ2
(k2 − ξ)cβ,τ2,σ2

(k2)cα,τ1,σ1
(k1)

]

−Zdonore
2

S

∑

τ,σ

∑

k,ξ

∑

α=v′,c′

V ′(ξ)c†α,τ,σ(k + ξ)cα,τ,σ(k),

(8a)

Ûinter =
e2

S

∑

τ1,τ2
σ1,σ2

∑

k1,k2,ξ

∑

α=v,c

∑

β=v′,c′

W(ξ) c†α,τ1,σ1
(k1 + ξ)c†β,τ2,σ2

(k2 − ξ)cβ,τ2,σ2
(k2)cα,τ1,σ1

(k1)

−Zdonore
2

S

∑

τ,σ

∑

k,ξ

∑

α=v,c

W(ξ) c†α,τ,σ(k + ξ)cα,τ,σ(k),

(8b)

where ξ is the momentum transfer, and S the sample
area. The donor ion is treated as a dispersionless scat-
terer, and is assumed to be present in the MoX2 (elec-
tron) layer. Henceforth, we assume that a donor yields a
single electron to the TMD and set Zdonor = 1.

The radiative recombination of electrons and holes is
driven by the light-matter interaction

Ĥr =
eγ

~c
∑

q

∑

k,τ,σ

√
4π~c
V q

c†v,τ,σ(k− q‖)cc,τ,σ(k)a†τ (q),

(9)

in the WX2 layer and an analogous term Ĥ ′r in the MoX2

layer. Here, γ(′) is given by the in-plane momentum ma-
trix element between c(

′) and v(′) band states, evaluated
at the ±K points of the BZ [32]. a†τ (q) creates a photon
of momentum q and in-plane polarization τ , determined
by the electron’s valley degree of freedom, where τ = +
(τ = −) represents right-handed (left-handed) circular
polarization. The photon momentum q = q‖ + q⊥ is
split into its in-plane and out-of-plane components, re-
spectively, and V = SL, with L the height of the optical
cavity.

Let |Ψ〉 be an interlayer excitonic eigenstate of the

Hamiltonian Ĥ0 + Ûintra + Ûinter of energy EΨ. Photon
emission through the term Ĥr requires the recombining
carriers to be in the same TMD layer. This is allowed by
the perturbation Ĥt, giving the first-order correction to
the wave function

|Ψ(1)〉 =
∑

n

〈n|Ĥt|Ψ〉
En − EΨ

|n〉, (10)

where the sum runs over the eigenstates |n〉 of Ĥ0 +

Ûintra + Ûinter, with energies En. The resulting rate of
radiative recombination is then given by Fermi’s golden
rule as

ΓΨ =
2π

~
∑

f

∣∣∣
〈
f
∣∣[Ĥr + Ĥ ′r

]∣∣Ψ(1)
〉∣∣∣

2

δ(Ef − EΨ), (11)

where {|f〉} is the set of possible final states, containing
one additional photon. As discussed below, the relevant
matrix elements in Eq. (11) can be evaluated numerically
in QMC.

III. RECOMBINATION OF DONOR-BOUND
INTERLAYER COMPLEXES

A. Model parameters

We now discuss the optical emission signatures of
the most relevant donor-bound interlayer excitonic com-
plexes predicted by VMC and DMC simulations. For
concreteness, we will focus on MoSe2/WSe2 heterobilay-
ers (X=Se); parameters relevant to this pair of materi-
als are shown in Table I. Furthermore, we assume that
the heterobilayer is encapsulated in bulk hBN, and set
the dielectric constant to ε = 4. Our chosen value of 4
corresponds to the high-frequency dielectric constant of
hBN, which is reasonable as the exciton binding energy
is considerably larger than the highest optical phonon
frequency of hBN. The tensor nature of the hBN di-
electric constant supplies an effective dielectric constant
ε̄ =
√
ε‖ε⊥ and renormalizes the interlayer distance d by

a factor
√
ε‖/ε⊥, where ε‖ and ε⊥ are the in-plane and

out-of-plane dielectric constants (see Appendix A). How-
ever, taking ε‖(∞) and ε⊥(∞) from various sources we

find that 3.1 <
√
ε‖ε⊥ < 4.5 and 0.71 <

√
ε‖/ε⊥ < 0.95

[33–36]. This justifies, in part, our use of ε = 4 and our
use of the physical layer separation, but as a check of
the robustness of our results, we have considered a few
other dielectric environments for a restricted set of charge
complexes.

The Hamiltonian Eq. (4), without Ĥt (or, with charges
being fixed in their layers), was solved using DMC, for
various numbers of excess electrons and holes, and in the
presence of donor impurities in the MoSe2 layer. Our
DMC total energies are statistically exact: we have con-
sidered no complexes containing any pairs of indistin-
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guishable fermions, and therefore our trial wave functions
are nodeless. The technical details of our DMC calcula-
tions are given in Appendix B 1. Binding energies for
free and impurity-bound excitons and trions, in different
dielectric environments, are reported in Table II.

TABLE I. Model parameters for MoSe2 and WSe2, ex-
tracted from Refs. [21, 23, 32, 37, 38], and the heterobilayer
MoSe2/WSe2 extracted from Refs. [10, 12, 39]. The inter-

layer gap Ẽg was estimated from the luminescence spectrum
reported in Ref. [12], considering the exciton binding energies
of Table II. From left to right, the single-layer parameters are:
lattice constant a, VB and CB masses mv and mc, screening
length r∗ in a vacuum environment, and Fermi velocity γ.
The heterobilayer parameters are: valence and conduction
interlayer spacing ∆v and ∆c, interlayer band gap Ẽg, and
interlayer distance d.

a (Å) mv/m0 mc/m0 r∗ (Å) γ (eV Å)
MoSe2 3.30 0.44 0.38 39.79 2.53
WSe2 3.29 0.34 0.29 45.11 3.17

∆v (eV) ∆c (eV) Ẽg (eV) d (Å)
MoSe2/WSe2 0.36 0.36 1.5 6.48

The simplest interlayer excitonic complex is a donor-
bound exciton D0

c′hv, where D0
c′ represents a positive

donor ion that has been neutralized by binding an elec-
tron from band c′, and hv a hole from band v. (When
complex labels appear as subscripts in formulas, we will
suppress the v and c subscripts for clarity.) DMC simu-
lations predict that this complex is unbound due to the
screening of the interlayer interaction between holes and
the strongly bound neutral donor state D0

c′ , whose bind-
ing energy is Eb

D0 = −229.03 meV (Table II). We there-
fore consider the recombination of a neutral donor D0

c′

with delocalized holes in band v.
Adding one more electron we obtain a donor-bound

trion. Alternatively, this complex can be viewed as an
interlayer exciton Xvc′ bound by a neutral donor D0

c′ ,
leading to the notation D0

c′Xvc′ . Remarkably, this larger
complex is stable up to ∼ 256 K, with binding energy
Eb

D0X ≈ 22.53 meV (Table II) for the most energetically
favorable dissociation channel into a neutral donor D0

c′

and an interlayer exciton Xvc′ .
In the following sections we calculate the photoemis-

sion rates of these two complexes using the formalism
described in Sec. II.

B. D0
c′hv: Neutral donor and free hole

The initial state for the recombination process of a neu-
tral donor and a free hole is given in second quantization
by

|D0;kh〉 =
1√
S

∑

k

χ̃k c
†
c′,τ ′,σ′(k)cv,τ,σ(kh)|Ω〉, (12)

where χ̃k =
∫
χ(r)e−ik·r d2r is the Fourier transform of

the donor-atom wave function centered at the donor site.

TABLE II. Binding energies Eb of some charge-carrier com-
plexes in a MoSe2 monolayer, a WSe2 monolayer, and a
MoSe2/WSe2 heterobilayer in different dielectric environ-
ments including: vacuum on both sides, SiO2 on one side and
vacuum on the other, bulk hBN on one side and vacuum on
the other, and bulk hBN on both sides. In the heterobilayer
it is assumed that the donor ion and electrons occur in the
MoSe2 layer, while the holes are confined to the WSe2 layer.
The material parameters are listed in Table I. The DMC error
bars are everywhere smaller than 0.2 meV.

Binding energy (meV)
System ε

Xvc′ X−vc′c′ D0
c′ D0

c′Xvc′

hBN/MoSe2/hBN 4 194 16.2 260 21.0
hBN/WSe2/hBN 4 160 13.6 215 18.1
vac./MoSe2/WSe2/vac. 1 206 6.2 540 40.3
SiO2/MoSe2/WSe2/vac. 2.45 123 5.1 329 30.1
hBN/MoSe2/WSe2/vac. 2.5 121 5.2 324 29.9
hBN/MoSe2/WSe2/hBN 4 84.2 4.1 229 22.5

Relative to the neutral vacuum, the state’s energy can be
written as ED0(kh) = Ec′(0) − Ev(kh) − Eb

D0 , with Eb
D0

the binding energy.

In the close-alignment limit and in the absence of in-
tervalley scattering, the complex described by Eq. (12)
can decay through radiative recombination only if τ ′ = τ .
Furthermore, spin-valley locking [37] and the known band
ordering of MoSe2 and WSe2 monolayers [32] further re-
quire that σ = σ′. Considering single-photon final states
of the form |f〉 = a†τ (q) |Ω〉, with polarization determined
by the valley quantum number, and assuming a small
twist angle θ ≈ 0◦, Eqs. (10) and (11) give the radiative
decay rate

Γ<D0h =
4Ẽg

~
e2

~c

[
3tvvγ

′

~c∆v
− 3tccγ

~c(∆c + Eb
D0)

]2

×
∣∣∣∣
∫
d2r ei∆K·rχ(r)

∣∣∣∣
2

nh,

(13)

where nh is the hole density of the sample. To evalu-
ate Eq. (13), we obtain the wave function χ(r) of the
donor-bound electron by solving the two-body problem
with a finite-element method, as detailed in Appendix E.
Note that a finite amplitude for radiative recombination
depends critically on the electron-hole asymmetry, and
on having different tunneling strengths between the CBs
and the VBs of the two layers, owing to the symmetry
properties of the band states.

C. D0
c′Xvc′ : Donor-bound interlayer trion

As discussed above, a donor-bound trion D0
c′Xvc′ can

be viewed as an interlayer exciton bound to a neutral
donor ion. Defining the interlayer exciton Xvc′ and D0

c′

energies as EX = Ec′(0)−Ev(0)−Eb
X and ED0 = Ec′(0)−

Eb
D0 , respectively, the energy of a D0

c′Xvc′ complex can be

expressed as ED0X = ED0 + EX − Eb
D0X, with Eb

D0X the
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binding energy. Its eigenstate is given by

|D0X〉 =
1

S3/2

∑

kh,k1,k2

Φ̃kh,k1,k2

× c†c′,τ ′,σ(k1)c†c′,−τ ′,−σ′(k2)cv,τ,σ(kh)|Ω〉,
(14)

with its two electrons belonging to opposite valleys, thus
minimizing their mutual repulsion [see Eqs. (1a) and
(1b)]. In this case, we consider decay into states of the
form |f〉 = a†τ (q)|D0〉, which are energetically favorable
given the large binding energies of D0

c′ bound states. The
corresponding radiative rate for close interlayer align-
ment is given by

Γ<D0X ≈
4Ẽg

~
e2

~c

∣∣∣∣
∫
d2r

∫
d2r′ ei∆K·rχ∗(r′)Φ(r, r, r′)

∣∣∣∣
2

×
[

3tvvγ
′

~c(∆v + Eb
D0X + Eb

X)
− 3tccγ

~c(∆c + Eb
D0X + Eb

X)

]2

.

(15)

The donor atom in the final state can be in its ground
state, or in any excited state allowed by angular mo-
mentum conservation. This constitutes a series of ra-
diative subchannels, and in principle results in a series
of lines with energies determined by the donor atom
spectrum. The main subchannel, corresponding to the
ground state χ1s(r), produces the main emission line at

E∗ = Ẽg − (E + Eb
D0X + Eb

X). The first radially sym-
metric excited state, χ2s(r), will produce an additional
line ∼ 167 meV above the main line. The overlap in-
tegrals between the ground-state donor-bound trion and
the 1s and 2s neutral donor states were evaluated us-
ing VMC, and the latter was found to be two orders of
magnitude smaller. We conclude that excited states can
be neglected, and henceforth only the 1s subchannel will
be considered. In the case of ∆K = 0, the integral in

Eq. (15) is given by
∣∣∫ d2r

∫
d2r′ χ∗(r′)Φ(r, r, r′)

∣∣2 = 1.47
(see Appendix B 3 for details).

To summarize Sec. III, Fig. 1(b) shows the
radiative rates of D0

c′hv and D0
c′Xvc′ in an

hBN/MoSe2/WSe2/hBN heterostructure, for small
twist angles. The large-angle asymptotic behavior of the
radiative rate shown in Fig. 1(b) is discussed next.

IV. ASYMPTOTIC BEHAVIOR FOR LARGE
INTERLAYER TWIST ANGLES

The asymptotic behavior of the radiative rate for large
valley mismatch ∆K >∼ 1/a∗0 can be obtained from a per-
turbative treatment of the short-range interactions Eq.
(3). Let |Ψ0〉 be an excitonic state of the Hamiltonian

ĤLR = Ĥ0 + Û<intra + Û<inter, (16)

of energy E0
Ψ, containing the long-range approximation

to the carrier-carrier and donor-carrier interaction. The
interactions Û<intra and Û<inter are given by the expres-
sions (8a) and (8b), respectively, with the substitutions
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FIG. 3. Diagrams for the radiative recombination of neutral
donors D0

c′ with free holes hv. The solid (dashed) line rep-
resents a free hole (electron); the donor impurity center is
represented by a “×” symbol, and the D0

c′ state by “×” in a
dashed circle. Horizontal lines correspond to interlayer tun-
neling, wavy lines to Coulomb scattering, and the triangular
vertex represents radiative recombination.

V(′)(ξ) −→ V(′)
< (ξ) and W(ξ) −→ W<(ξ) [see Eqs. (2a)

and (2b)]. The state |Ψ0〉 is perturbed by the interlayer

tunneling term Ĥt, as well as the short-range interaction

Û>intra, obtained by substituting V(′)(ξ) −→ V(′)
> (ξ) in Eq.

(8a) [see Eq. (3)]. As discussed above, the short-range
interlayer term is exponentially suppressed, and can be
ignored altogether. As a consequence, short-range impu-
rity scattering can take place exclusively in the electron
layer (see diagrams of Fig. 3).

The momentum transfer dependence of Eq. (3) justi-

fies treating Û>intra as a perturbation. The second-order
perturbative correction to the wave function relevant for
photon emission is given by

|Ψ(2)
0 〉 =

∑

m,n

〈n|[Ĥt + Û>intra]|m〉〈m|[Ĥt + Û>intra]|Ψ0〉
(E0

m − E0
Ψ)(E0

n − E0
Ψ)

|n〉,

(17)

where the sums run over the eigenstates |n〉 of ĤLR,
with energies E0

n. Introducing the light-matter interac-
tion [Eq. (9)], we focus on the diagrams of Fig. 3 for the
D0
c′hv complex, and those of Fig. 4 for D0

c′Xvc′ .
In general, all diagrams must be considered when eval-

uating the radiative decay rate. For simplicity, however,
we assume that the CB and VB spacings remain the

largest scales in the problem, such that ~2∆K2

2mα
� ∆c, ∆v.

In this approximation, two out of the four diagrams for
D0
c′hv radiative decay cancel out approximately, leaving

only the contributions from the diagrams of Figs. 3(a)
and (b) (see Appendix C). The resulting radiative decay
rate for D0

c′hv in the large twist angle (>) limit is given
by

Γ>D0h ≈
64π2e4Ẽg

~ε2r′∗2∆K4

e2

~c

[ mc′

~2∆K2

]2 [3tccγ

~c∆c
− 3tvvγ

′

~c∆v

]2

× |χ0(0)|2nh,
(18)

where the emitted photon energy is given by E∗ =
Ẽg −Eb

D0 . The factor of three multiplying the tunnelling
amplitudes tcc and tvv originates from the truncated sum
over reciprocal lattice vectors in Eq. (7), as a consequence
of the three equivalent K points in the Brillouin zone [31].
Finally, χ0(r) is the D0

c′ wave function obtained from the
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FIG. 4. Diagrams for the first radiative recombination chan-
nel of the D0

c′Xvc′ complex. The bound hole recombines with
the electron from the nearest valley in the opposite layer, as-
sisted by short-range Coulomb interactions with the donor
impurity. The remaining electron stays bound to the impu-
rity center, forming a neutral donor atom.
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FIG. 5. Diagrams for the second radiative recombination
channel of the D0

c′Xvc′ complex. The bound hole recombines
with the electron from the nearest valley in the opposite layer,
assisted by short-range Coulomb interactions with the second
electron, at the far valley. The latter recoils and unbinds from
the donor impurity.

Keldysh approximation Hamiltonian ĤLR, not to be con-
fused with the full bilayer interaction bound state χ(r).
As before, we evaluate the wave function using the finite-
element method, and obtain |χ0(0)|2 = 2.678× 10−3Å−2

(Appendix E).

With the perturbation Û>intra, there are two possible
channels for radiative recombination of the D0

c′Xvc′ com-
plex, resulting in different final states, and thus two sep-
arate lines in the PL spectrum. The first process in-
volves one of the electrons and the hole scattering from
the donor impurity and subsequently recombining, emit-
ting a photon and leaving behind a neutral donor as the
final state. This is analogous to the decay process con-
sidered in Sec. III C, and the corresponding diagrams are
shown in Fig. 4. Similarly to the D0

c′hv complex case,
the leading approximation to the amplitude is the sum
of two diagrams, giving a radiative rate

Γ>D0X ≈
64π2e4Ẽg

~ε2r′∗2∆K4

e2

~c

[ mc′

~2∆K2

]2 [3tccγ

~c∆c
− 3tvvγ

′

~c∆v

]2

×
∣∣∣∣
∫
d2r χ∗0(r)Φ0(0, 0, r)

∣∣∣∣
2

,

(19)

where the emitted photon energy is given by E∗ =
Ẽg− (Eb

D0X +Eb
X), and Φ0(rh, re, re′) is the D0

c′Xvc′ wave-
function in the Keldysh approximation.

A second radiative decay process is possible, where the
recombining electron and hole scatter with the second
electron, at the far valley. The latter electron recoils and
is unbound from the impurity, taking some amount of
kinetic energy and producing a shift in the emission line.

The corresponding diagrams are shown in Fig. 5, and
give a recombination rate

Γ
′>
D0X =

48π2e4Ẽg

~ε2r′∗2∆K4

e2

~c

[ mc′

~2∆K2

]2 ∫
d2r |Φ0(r, r, r)|2

×
[
tccγ

~c∆c
− tvvγ

′

~c∆v

]2

.

(20)

The photon energy in this case is given by E∗ = Ẽg −
Eb

D0 −Eb
D0X −Eb

X − ~2∆K2

2mc′
, and the corresponding line in

the PL spectrum is red-shifted with respect to that of
the first channel by ∼ 100 meV.

The overlap integrals between the initial- and final-
state wave functions given in Eqs. (19) and (20) were

evaluated in VMC for the Hamiltonian ĤLR. We ob-

tain
∣∣∫ d2r χ∗0(r)Φ0(0, 0, r)

∣∣2 = 6.94 × 10−7 Å−4, and∫
d2r |Φ0(r, r, r)|2 = 3.22 × 10−7 Å

−4
, respectively (see

Appendix B 3).
Eqs. (18), (19) and (20) show that the radiative chan-

nels considered for the two complexes decay with the in-
terlayer twist angle as θ−8, in the limit ∆K � 1/r∗, 1/r′∗.
This is shown in Fig. 1(b) for angles larger than 6◦.
Our analysis indicates that, even in the case of local-
ized impurity-bound states, the observation of photolu-
minescence from interlayer excitonic complexes in TMD
bilayers requires near perfect alignment between the two
layers.

V. PHONON-ASSISTED RECOMBINATION

Electron-phonon (e-ph) interactions introduce yet an-
other channel for radiative recombination. Similarly to
the electron recoil process discussed above, when phonons
are emitted during the recombination of a given complex,
they absorb part of the energy and produce a red-shifted
replica in the PL spectrum. The following analysis is
carried out in terms of the VMC wave functions |Ψ〉 dis-
cussed in Sec. III, evaluated with the exact bilayer inter-
actions V(′)(ξ) and W(ξ).

The e-ph interaction Hamiltonian is given by

Ĥe-ph =
∑

α=v,c

∑

τ,σ

∑

k,q,ν

gν,α(q)√
S

(b†h,ν,−q + bh,ν,q)

× c†α,τ,σ(k + q)cα,τ,σ(k)

+
∑

α=v′,c′

∑

τ,σ

∑

k,q,ν

gν,α(q)√
S

(b†e,ν,−q + be,ν,q)

× c†α,τ,σ(k + q)cα,τ,σ(k),

(21)

where b†Λ,ν,q (bΛ,ν,q) is the creation (annihilation) oper-
ator for a phonon of momentum q and mode ν in the
electron (Λ = e) or hole (Λ = h) layer, which couples to
an electron in band α = c′, v′, c, v with strength gν,α(q).

We consider the longitudinal optical (ν = LO), ho-
mopolar (ν = HP), and longitudinal acoustic (ν = LA)
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phonon modes allowed by the lattice symmetry. The e-ph
couplings are given by

gLO,α(q) =
1

A

√
~

2ρ(Mr/M)ωLO

2πZαe
2

1 + qr∗
,

gHP,α(q) =

√
~

2ρωHP
Dα,

gLA,α(q) =

√
~

2ρωLA
Ξα q,

(22)

where ρ is the mass density, Mr is the metal-and-two-
chalcogen system reduced mass, M is the total mass of
the unit cell, and A is the unit-cell area of the correspond-
ing TMD layer. ων is the phonon frequency, which we
approximate as a constant for the optical modes, and as
ωLA = cLA q for the LA mode, with cLA being the sound
velocity. Z is the Born effective charge, r∗ is the screening
length, and Dα and Ξα are the deformation potentials of
the optical and acoustic modes, respectively. The various
parameters are taken from Refs. [40–43], and summarized
in Table V. We focus on the low-temperature limit, where
phonon occupation is low and phonon absorption can be
neglected.

Perturbative corrections to the interlayer excitonic
state |Ψ〉 by the interlayer hopping and e-ph interactions
are given by

|Ψ(2)〉 =
∑

m,n

〈n|[Ĥt + Ĥe-ph]|m〉〈m|[Ĥt + Ĥe-ph]|Ψ〉
(Em − EΨ)(En − EΨ)

|n〉.

(23)
The relevant diagrams for radiative recombination with
phonon emission are shown in Figs. 6 and 7 for D0

c′hv
and D0

c′Xvc′ , respectively. In both figures, panels (a)–(d)
correspond to single-phonon emission in the hole layer
(WSe2), whereas panels (e)–(h) correspond to single-
phonon emission in the electron layer (MoSe2). Although
in principle the two sets of diagrams give separate lines at
energies determined by the phonon energy in each layer,
the parameters reported in Table V show that these lines
are within only a few meV of each other. For simplicity,
we assume that the two layers have the same optical-
phonon energies and acoustic-phonon sound velocities,
producing a single line in the PL spectrum. The result-
ing radiative rates are given in the limit of large twist
angle (>) by (Appendix D)

Γ>,νD0h ≈
48Ẽg

~
e2

~c

[
γ′tvv
~c∆v

− γtcc
~c∆c

]2

nh

×
[(

mvgν,v(∆K)

~2∆K2

)2

+

(
mc′gν,c′(∆K)

~2∆K2

)2
]
,

(24a)

⇥

⇥⇥ ⇥

⇥ ⇥

⇥

⇥

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 6. Diagrams for the radiative recombination of the D0
c′hv

complex with phonon scattering. The top four diagrams cor-
respond to phonon emission in the WSe2 layer and the bottom
four diagrams correspond to phonon emission in the MoSe2

layer.

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 7. Diagrams for the radiative recombination of the
D0
c′Xvc′ complex with phonon scattering and D0

c′ in the final
state. The top four diagrams correspond to phonon emission
in the WSe2 layer and the bottom four diagrams correspond
to phonon emission in the MoSe2 layer.

Γ>,νD0X ≈
48Ẽg

~
e2

~c

[
γ′tvv
~c∆v

− γtcc
~c∆c

]2

×
[(

mvgν,v(∆K)

~2∆K2

)2

+

(
mc′gν,c′(∆K)

~2∆K2

)2
]

×
∫
d2r

∣∣∣∣
∫
d2r′ χ∗(r′)Φ(r, r, r′)

∣∣∣∣
2

.

(24b)

The VMC estimate of the overlap of χ(r′) with Φ(r, r, r′)
can be found in Table VI.

In the small-twist-angle limit (<), phonon emission
from D0

c′hv complexes is dominated by the diagram of
Fig. 6(a). In that process, the phonon is emitted by a
hole in the WSe2 layer, which then tunnels to recom-
bine with the electron bound to the donor impurity. By
contrast, all other diagrams shown in Fig. 6 involve ion-
ization of the donor atom, which is suppressed by the
large binding energy of the D0

c′ complex. The radiative
rates for D0

c′hv can thus be approximated by (Appendix
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TABLE III. Electron-phonon coupling parameters for LO, HP, and LA phonon modes. ωLO and ωHP are the LO- and HP-mode
frequencies, cLA is the speed of sound for the LA mode, ρ is the mass density, Dα and Ξα are the deformation potentials of the
optical and acoustic modes, respectively, Mr/M is the ratio of the metal-and-two-chalcogen system reduced mass to the total
mass of the unit cell, and Z is the Born effective charge.

~ωLO (meV) ~ωHP (meV) cLA (cm/s) ρ (g/cm2) Dc (eV/Å) Dv (eV/Å) Ξc (eV) Ξv (eV) Mr/M Z
MoSe2 37 30 4.8× 105 4.5× 10−7 5.2 4.9 3.4 2.8 0.235 1.8
WSe2 31 31 4.4× 105 6.1× 10−7 2.3 3.1 3.2 2.1 0.249 1.08

D)

Γ
<,ν=LO/HP
D0h ≈ 6Ẽg

π~
e2

~c

[
γ′tvv
~c∆v

]2
[
|gν,c′(∆K)|2
(
~ων + Eb

D0

)2

× mv|gν,v(∆K)|2
~3ων

∣∣∣∣
∫
d2r ei∆K·rχ(r)

∣∣∣∣
2
]
nh,

(25a)

Γ<,LA
D0h ≈

6Ẽg

π~
e2

~c
mv Ξ2

v

~2ρc2LA

[
γ′tvv
~c∆v

]2

×
∣∣∣∣
∫
d2r ei∆K·rχ(r)

∣∣∣∣
2

nh.

(25b)

In the D0
c′Xvc′ case at small twist angles, the phonon

emission process is suppressed by the ionization of the
complex in the intermediate state and the overlap inte-
gral between the initial D0

c′Xvc′ and final D0
c′ states. The

rates are given by

Γ
<,ν=LO/HP
D0X =

12Ẽg

~
e2

~c
|gν,v(0)|2 + |gν,c′(0)|2
(~ων + Eb

D0X + Eb
X)2

×
[
γ′tvv
~c∆v

− γtcc
~c∆c

]2 ∫
d2r

∣∣∣∣
∫
d2r′ χ∗(r′)Φ(r, r, r′)

∣∣∣∣
2

,

(26a)

Γ<,LA
D0X =

3Ẽg√
2~3cLA

e2

~c
(mv +mc′)

3/2

√
Eb

D0X + Eb
X

[
γ′tvv
~c∆v

− γtcc
~c∆c

]2

×
[

Ξ2
v

ρ

∣∣∣∣
∫
d2r

∫
d2r′ e−i∆K·rχ∗(r′)Φ(r, r, r′)

∣∣∣∣
2

+
Ξ2
c′

ρ′

∣∣∣∣
∫
d2r

∫
d2r′ ei∆K·rχ∗(r′)Φ(r, r, r′)

∣∣∣∣
2
]
,

(26b)

where ρ and ρ′ are the mass densities of WSe2 and MoSe2,
respectively (Table V).

Eqs. (24a)–(26b) contain a factor of three originating
from the tunnelling process, which gives three distinct
intermediate states with different emitted phonon wave
vectors, related by C3 symmetry. As a result, the interfer-
ence leading to the factor of nine in the interaction-driven
processes of Secs. III and IV is absent in this case.

Additional contributions to the LO phonon emission
come from e-ph interaction of a carrier in one layer with
an LO phonon in the other. This is made possible by
the long range of the LO phonon-induced potential. The

D0

D0X

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

ne/nD

n/
n D

nh/nD

FIG. 8. Model for the density of complexes D0
c′ and D0

c′Xvc′

as a function of the electron density ne.

interlayer separation results in an exponential suppres-
sion of the potential in the interlayer distance and mo-
mentum transfer as e−∆Kd, which nonetheless is approx-
imately unity in the limit of close alignment. Thus, we
add this contribution to the LO-phonon-assisted recom-
bination rates for D0

c′hv and D0
c′Xvc′ complexes in the

small-twist-angle limit.
The total phonon emission rates for the two complexes,

combining the three phonon modes, are shown in Fig.
1(b) as functions of the twist angle. As mentioned above,
the phonon contribution to the recombination rate is
most significant for the D0

c′hv complex, being an order of
magnitude larger than for D0

c′Xvc′ . The LO phonon mode
in the hole layer (WSe2) is the dominant phonon-assisted
process overall, and gives a significant decay rate in the
small-twist-angle limit. As a result, we predict additional
phonon-replica lines in the PL spectrum, red-shifted by
the phonon energy ~ωLO = 31 meV with respect to the
main D0

c′hv and D0
c′Xvc′ lines. The D0

c′hv phonon-replica
line gives the most dominant feature, with decay rates
comparable to the main D0

c′hv line.

VI. INTENSITY DEPENDENCE ON DOPING

In addition to the decay rates, the relative line in-
tensities also depend on the distribution of D0

c′h and
D0
c′Xvc′ complexes in the system. At charge neutrality,

neutral excitonic complexes such as D0
c′hv are energeti-

cally favorable, whereas additional electrons introduced
into the sample will bind to existing neutral donors to
form D0

c′Xvc′ complexes. Thus the relative population of
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complexes can be controlled through doping.
In this section we model the evolution of the PL spec-

trum with the carrier density. We assume a constant
density nh of laser-pumped holes and a large density of
donor impurities in the sample, and consider the tun-
ing of the electron density ne by electrostatic gating [18].
Under these assumptions, and given that the net popu-
lation of donor-bound complexes is limited by the donor
density nD, we limit our discussion to the regime where
nh � ne ∼ nD.

We use a simplified zero-temperature model for the
occupations of the two complexes, shown in Fig. 8.
There are two main regimes determined by the sample-
dependent donor density nD. In the p-doped regime, de-
fined by 0 < ne < nD, added electrons neutralize the ex-
cess positive donors, forming D0

c′ complexes that can re-
combine with the optically pumped holes. In this regime,
the formation of D0

c′Xvc′ complexes is energetically unfa-
vorable, and thus thermally suppressed until all donors
have been neutralized.

By contrast, in the n-doped regime, defined by nD <
ne < 2nD, it is energetically favorable for additional elec-
trons to bind with an existing neutral donor to form ei-
ther a charged donor state D−c′c′ (Table IV), or a donor-
bound trion D0

c′Xvc′ . For the latter case we must con-
sider that laser-pumped holes are scarce (nh � nD), and
thus the probability of forming a D0

c′Xvc′ complex will be
proportional to nh/nD. The increase in electron density
is accompanied by a decrease in D0

c′hv′ numbers, and a
much slower increase in the D0

c′Xvc′ population, until the
number of donor-bound trions in the system equals the
number of available holes. This is shown in Fig. 8.

The line intensities within this model are given by

ID0h ≈ ΓD0h

{
ne, ne < nD

nD

[
1− ne−nD

nD

]
, nD < ne < 2nD

,

(27)
and

ID0X ≈ ΓD0X

{
0, ne < nD

nD
nh

nD

ne−nD

nD
, nD < ne < 2nD

. (28)

The resulting simulated PL spectrum is shown in Fig.
9 for different doping densities, given in terms of the
donor density in the MoSe2 layer. A Gaussian lineshape
was used for the lines with an experimentally motivated
broadening [18] of 2σ = 60 meV. The spectrum shows the
three dominant lines, D0

c′hv, D0
c′Xvc′ , and the red-shifted

phonon replica of D0
c′hv, with the lines’ peak energies de-

termined by the DMC-obtained binding energies. The
three complexes evolve with doping as prescribed by the
occupation model [Eqs. (27) and (28)]. The D0

c′hv com-
plex and its phonon replica dominate at low doping, but
the D0

c′Xvc′ complex grows slowly in intensity with in-
creasing doping, leading to a simultaneous reduction in
the intensity of the D0

c′hv complex. For the broadening
used in the simulated PL spectrum, the proximity of the
three lines results in an intricate line form, providing a
signature in PL experiments for the intrinsic structure of
the interlayer emission line.

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.0
0.1
0.2
0.3
0.4

1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
0.00
0.05
0.10
0.15
0.20
0.25
0.30

I
[a

.u
.]

E [eV]

D0h

D0X

D0h + ph
D0X + ph

total

ne = 0.9nD

ne = 1.8nD

ne = 1.6nD

ne = 1.4nD

ne = 1.2nD

FIG. 9. Simulated normalized PL spectra for a closely aligned
(θ ≈ 0◦) MoSe2/WSe2 heterobilayer, originating from the
D0
c′hv and D0

c′Xvc′ complexes at different electron densities
ne, given in terms of the fixed donor density nD. Dashed
curves correspond to the phonon replicas. The lines are as-
sumed to have Gaussian shapes of width 2σ = 60 meV, and
we use nh = 1011 cm−2 and nD = 1013 cm−2.

VII. CONCLUSIONS

The momentum mismatch between twisted and incom-
mensurate heterobilayer TMDs prevents efficient radia-
tive recombination of interlayer complexes composed of
electrons and holes localized on opposite layers. In this
paper we have provided a mechanism to bridge the mo-
mentum gap involving donor impurities present in the
heterobilayer system, both at small and large twist an-
gles. The donor impurities were found to provide deep
potential wells (∼ 200 meV), resulting in strongly bound
interlayer complexes, as revealed by DMC calculations.
Focusing on the simplest multiparticle complexes, we ob-
tain radiative rates of up to a few µs−1 for the neu-
tral donor with a free hole D0

c′hv and the donor-bound
trion D0

c′Xvc′ complexes for closely aligned layers, and
a strong twist-angle suppression for large misalignment
with the asymptotic form ∝ θ−8. A comparable contri-
bution was found for the D0

c′hv complex from emission
of optical phonons, resulting in a total of three domi-
nant and doping-tunable lines in the PL spectrum. The
D0
c′hv and its phonon replica are expected to dominate

the emission spectrum for electron densities below the
sample-dependent donor concentration; conversely, PL
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from the D0
c′Xvc′ complex is expected to dominate the

interlayer sector of the spectrum when the electron den-
sity exceeds the density of donors.
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Appendix A: Long-range interaction between charge
carriers

1. Multilayer Keldysh interaction

Consider a vdW heterostructure of 2D semiconduc-
tors comprised of N parallel layers (labelled i =
{1, 2, . . . , N}), each having in-plane susceptibility κi and
z-coordinate di. Suppose this heterostructure is im-
mersed in an isotropic medium of dielectric constant ε.
In practice the dielectric constant is taken to be the av-
erage of the dielectric constants of the media above and
below the heterobilayer.

Suppose that a test charge density

ρjtot(r, z) = ρj(r)δ(z − dj), (A1)

is present in layer j. The resulting electric displacement
field is

D = − ε

4π
∇φ(r, z)−

∑

i

κi[∇‖φ(r, di)]δ(z − di), (A2)

where ∇‖ is the 2D gradient operator (excluding the z-
component). Gauss’s law yields

ρj(r, z)δ(z − dj) = − ε

4π
∇2φ(r, z)

−
∑

i

κi[∇2
‖φ(r, di)]δ(z − di).

(A3)

Taking the Fourier transform gives

ρj(q)e−ikdj =
ε

4π
(q2+k2)φ(q, k)+q2

∑

i

κiφ(q, di)e
−ikdi ,

(A4)

which, after Fourier inversion in the k variable only, gives

ρj(q)e−q|z−dj | =
ε

2π
qφ(q, z) + q2

∑

i

κiφ(q, di)e
−q|z−di|.

(A5)
Evaluating Eq. (A5) at each layer (z = dl, l =
{1, 2, . . . , N}), we find

ρje−q|dl−dj | = q[ε/(2π)− κlq]φ(q, dl)

+ q2
∑

i 6=l
κiφ(q, di)e

−q|dl−di|, (A6)

which is a matrix equation

ρjl (q) =
∑

i

Mli(q)φi(q), (A7)

where

ρjl (q) = ρj(q)e−q|dl−dj |,

φl(q) = φ(q, dl),

Mli =

{
q[ε/(2π) + κlq] if i = l
q2κie

−q|dl−di| otherwise
. (A8)

The solution to Eq. (A7) is a set of φi(q) ≡ ρj(q) ×
vji(q), with vji(q) being the Fourier components of the
interaction potential between layer j and layer i. If j = i
then this is the intralayer interaction in layer j. This pro-
cedure should, in general, be repeated for j = 1, 2, . . . , N ;
however, if there is sufficient symmetry (e.g., a mirror
symmetry about a plane through the center of the het-
erostructure) then only a subset of j values will require
explicit solution of Eq. (A7).

The same analysis applies in the case that the sur-
rounding dielectric medium is anisotropic, having dielec-
tric tensor

ε̃ =



ε‖ 0 0
0 ε‖ 0
0 0 ε⊥


 , (A9)

provided the substitutions

d→ D =
√
ε‖/ε⊥d, (A10)

ε→ ε̄ =
√
ε‖ε⊥, (A11)

are also made.

2. Numerical evaluation of the bilayer Keldysh
interaction

In the bilayer case (N = 2), it is straightforward to
solve Eq. (A7) to obtain the intra- (V and V ′) and inter-
layer (W) potentials of Eqs. (1a)–(1c).

Continuum QMC calculations require the potential en-
ergy to be evaluated in real space. We therefore require
the inverse Fourier transforms of Eqs. (1a)–(1c), which
reduce to Hankel transforms due to the circular symme-
try of the interaction potentials.
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At long range (small q), the intralayer interaction
V(q) = 2π/ {εq[1 + (r∗ + r′∗)q]} + O(q) reduces to the
monolayer Keldysh form [19], with an effective screening
length reff

∗ = r∗ + r′∗. The inverse Fourier transform can
be performed analytically in this limit, giving

V(r) ≈ π

2ε(r∗ + r′∗)

× [H0(r/(r∗ + r′∗))− Y0(r/(r∗ + r′∗))]

+O(r−3), (A12)

where H0 and Y0 are a Struve function and a Bessel func-
tion of the second kind, respectively. Equation (A12) is
a good approximation at long range.

At short range (large q), the intralayer interaction of
Eq. (1a) again reduces to the monolayer Keldysh form,
but this time with reff

∗ = r∗, i.e., the second layer becomes
irrelevant. On the other hand, at very long range, the
monolayer Keldysh interaction is also valid, since V(q) =
2π/(εq) + O(1) at small q so that the interaction is of
Coulomb form. Thus the monolayer Keldysh interaction

V(r) ≈ π

2εreff∗

[
H0(r/reff

∗ )− Y0(r/reff
∗ )
]

+O(r−2), (A13)

is a reasonable approximation to the intralayer interac-
tion at both short and very long range.

To evaluate the “full” intralayer interaction numeri-
cally, we used the quadrature method of Ogata [44] to
perform the Hankel transform of V(q)−2π/ {εq[1 + r∗q]},
then added the result to the monolayer Keldysh interac-
tion of Eq. (A13). Partitioning the interaction into a
long-range part and a numerically evaluated short-range
part ensures that the quadrature is relatively straight-
forward, and that we can introduce a cutoff at large r,
beyond which the numerical corrective term is negligible.

At small q, the interlayer interaction of Eq. (1c)
reduces to the displaced Coulomb form W(q) =

2πe−(r∗+r
′
∗+d)q/(εq) + O(q); hence the long-range inter-

layer potential in real space is given by

W(r) ≈ 1

4π

√
r2 + (r∗ + r′∗ + d)

2
+O(r−3). (A14)

At short range in real space the interlayer interaction
should be nondivergent. Equation (A14) satisfies this
qualitative requirement.

To evaluate the “full” interlayer interaction numeri-
cally, we performed the numerical Hankel transform of
W(q) − 2πe−(r∗+r

′
∗+d)q/(εq), then added the result to

Eq. (A14).
There is an alternative long-range approximation

to the interlayer potential, which is more like
the intralayer potential. Noting that W(q) =
2π/ {εq[1 + (r∗ + r′∗ + d)q]} + O(q), the long-range in-
terlayer potential reduces to a Keldysh potential with
reff
∗ = r∗ + r′∗ + d, giving

W(r) ≈ π

2ε(r∗ + r′∗ + d)

×
[
H0

(
r

r∗ + r′∗ + d

)
− Y0

(
r

r∗ + r′∗ + d

)]

+O(r−3). (A15)

This introduces unphysical singular behavior into the in-
terlayer interaction at short range.

Appendix B: QMC calculations

1. Technical details

We performed VMC and DMC calculations [16, 17]
for complexes of distinguishable charge carriers and fixed
ions interacting via the “full” bilayer potential [Eqs. (1a)–
(1c)] and the approximate small-q Keldysh form of the
potential [Eqs. (A12) and (A15)], as described in Ap-
pendix A 2. We used trial wave functions of Jastrow
form, where the Jastrow exponents contained smoothly
truncated polynomial particle-particle terms, ion-particle
terms, ion-particle-particle, and particle-particle-particle
terms [45, 46]. Additional terms satisfying the analogs of
the Kato cusp conditions [6, 20, 47] were applied to the
trial wave function between pairs of particles wherever
there was a logarithmic divergence in the interaction be-
tween them, including the unphysical divergences in the
approximate Keldysh interaction. Free parameters were
optimized using VMC with variance [48, 49] and energy
minimization [50] as implemented in the casino code
[51].

In our DMC calculations we used two DMC time steps
in the ratio 1:4 and corresponding target populations in
the ratio 4:1, allowing a simultaneous extrapolation to
zero time step and infinite population. Since the charge
carriers are distinguishable, there is no fixed-node error
and hence DMC provides exact ground-state solutions
to the effective-mass model of interacting charge carriers
with the chosen model interaction.

2. Energies of complexes in the
hBN/MoSe2/WSe2/hBN heterostructure

Table IV shows the resulting total energies of com-
plexes in the hBN/MoSe2/WSe2/hBN heterostructure.
For completeness we include results in which the elec-
trons are found in either layer; however, the results of
immediate relevance to this paper are those for which the
electrons are all found in the MoSe2 layer. DMC results
for two-particle complexes were found to agree with cal-
culations performed using Mathematica’s finite-element
method [52] (see Appendix E). Using total energies, one
can assess the most energetically favorable dissociations
(see Table V) and therefore calculate binding energies of
various complexes.

It is clear from Table V that the approximate Keldysh
interaction performs well at calculating binding ener-
gies provided the dissociation does not involve significant
changes to short-range pair distributions. As an extreme
case, the binding energy of an exciton, which is simply
equal to its total energy and hence does not benefit from
any cancellation of errors, is overestimated by 23% when
the approximate Keldysh interaction is used.
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TABLE IV. Total DMC energies of various charge-carrier
complexes in the hBN/MoSe2/WSe2/hBN heterostructure
calculated using the Keldysh approximation to the bilayer
potential [Eqs. (A12) and (A15)] and the full bilayer interac-
tion [Eqs. (1a)–(1c)]. Primes (′) indicate that a charge carrier
is in the MoSe2 layer; otherwise the charge carrier is in the
WSe2 layer. Donor charges are always assumed to be in the
MoSe2 layer. The subscripts c and v indicate whether charge
carriers are electrons (c) or holes (v).

DMC total energy (meV)
Complex

Approx. Keldysh Bilayer potential
Xvc′ −103.958669(5) −84.232(1)
D0
c′ −163.2478711(5) −229.03306(1)

X−vc′c′ −108.1967(4) −88.32(3)
D−c′c′ −176.9426(3) −249.60(2)
D0
c′hv −163.4819(8) –

D0
c′Xvc′ −278.73(2) −335.781(4)

D−c′c′Xvc′ −292.83(1) –
Xvc −114.601814(1) −140.4303329(4)
D0
c −124.890219(9) −102.5996(7)

X−vcc′ −120.6018(5) –
X−vcc −123.7189(5) −152.25(1)
D−cc′ −165.8499(5) –
D−cc −129.3199(9) –
D+Xvc −133.758(2) −141.716(8)
D0
c′Xvc −279.776(5) –

D−c′c′Xvc −301.81(1) –
D0
c′X
−
vcc −295.00(1) –

TABLE V. Dissociations of complexes and the associated
binding energies in hBN/MoSe2/WSe2/hBN. The naming
convention for the carrier complexes is explained in the cap-
tion of Table IV.

Binding energy (meV)
Dissociation process

Approx. Keldysh Bilayer pot.

X−vc′c′ → Xvc′ + ec′ 4.2380(4) 4.09(3)
D0
c′Xvc′ → Xvc′ + D0

c′ 11.52(2) 22.516(4)
D−c′c′Xvc′ → Xvc′ + D−c′c′ 11.93(1) –
D−c′c′ → D0

c′ + ec′ 13.6948(3) 20.57(1)
D0
c′hv → D0

c′ + hv 0.2340(8) –

X−vcc′ → Xvc + ec′ 6.0000(5) < 0
X−vcc → Xv + ec 9.1170(5) 11.83(1)
D0
c′Xvc → Xvc + D0

c′ 1.926(5) –
D−c′c′Xvc → Xvc + D−c′c′ 10.26(1) –
D−cc′ → D0

c′ + ec 2.6020(5) –
D0
c′X
−
vcc → D0

c′ + X−vcc 8.03(1) –
D−cc → D0

c + ec 4.4297(9) < 0
D+Xvc → D+ + Xvc 19.156(2) 1.286(8)

3. Calculation of the overlap integrals

a. VMC evaluation of the normalization integral of a
many-body wave function

Consider a complex of N quantum particles with un-
normalized wave function Φ(R), where R = (r1, . . . , rN )
is the 2N -dimensional vector of all particle coordinates.
Let Ψ(R) be a normalized, bound-state sampling wave
function, which ideally has a large overlap with Φ and

the same asymptotic behavior. Then
∫
|Φ(R)|2 d2NR =

∫
|Ψ(R)|2

∣∣∣∣
Φ(R)

Ψ(R)

∣∣∣∣
2

d2NR

=

〈∣∣∣∣
Φ(R)

Ψ(R)

∣∣∣∣
2
〉

|Ψ|2
. (B1)

Hence we can evaluate the normalization of Φ by VMC
sampling of |Ψ(R)|2. We used the simple Jastrow form

Ψ(R) =
N∏

i=1

(√
2

π
ce−cri

)
, (B2)

for the sampling wave function, where the exponent c
is a positive, adjustable parameter that was chosen to
maximize the efficiency of the calculation.

b. Evaluation of overlap integrals

Numerical estimates of the various overlap integrals in
the expressions for the radiative recombination rates of
donor-bound trions in a hBN/MoSe2/WSe2/hBN system
are reported in Table VI. The ground state χ1s(re) and
the first excited state χ2s(re) of the neutral donor atom
(D0

c′) were calculated using a finite-element method (see
Appendix E). Using a VMC-optimized trial wave func-
tion Φ(rh, re1 , re2) for the ground state of the donor-
bound negative trion (D0

c′Xvc′), we employed a grid-
based method to evaluate those overlap integrals in Table
VI that can be reduced to one-dimensional radial inte-
grals. The remaining integrals were evaluated by a VMC
method, as described below.

Let Ψ be a sampling wave function, as defined in Ap-
pendix B 3 a. The overlap of the trion wave function with
the donor-atom wave function when an electron and a
hole are pinned vertically above one another is

∫∫
χ∗(r1)Φ(r2, r2, r1) d2r1 d

2r2

=

∫
|Ψ(R)|2χ

∗(r2)Φ(r1, r2, r1)

|Ψ(R)|2 d4R

=

〈
χ∗(r2)Φ(r1, r2, r1)

|Ψ(R)|2
〉

|Ψ|2
. (B3)

The last expression can readily be evaluated by VMC
sampling of |Ψ|2, using accurate numerical representa-
tions of the donor-atom wave function χ(re) obtained in
the finite-element calculations.

The overlap integrals are accurate to at least three
significant figures; however there is an unknown er-
ror arising from the fact that the trial wave function
Φ(rh, re1 , re2) only approximates the exact ground state.

Appendix C: Radiative recombination assisted by
short-range Coulomb interactions

Consider the wave function χ(r) for D0
c′ complexes in

the long-range (Keldysh) approximation described in Sec.
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TABLE VI. Overlap integrals required for calculations of
radiative recombination rates. Calculations are performed
for a hBN/MoSe2/WSe2/hBN system. Φ(rh, re1, re2) is the
ground-state wave function of the donor-bound negative trion,
with both donor and electrons in the MoSe2 layer and the
hole in the WSe2 layer (D0

c′Xvc′). χ1s(re) and χ2s(re) are
the ground-state and first-excited-state (rotationally invari-
ant) wave functions of the neutral donor atom in the MoSe2

layer (D0
c′).

Overlap Approx. Keldysh Bilayer pot.

|Φ(0,0,0)|2∫
|Φ|2 d6R 1.29× 10−9 Å−6 2.75× 10−9 Å−6

|∫ Φ(r,r,0) d2r|2∫
|Φ|2 d6R 8.09× 10−3 Å−2 6.08× 10−3 Å−2

∫
|Φ(r,r,0)|2 d2r∫
|Φ|2 d6R 1.28× 10−6 Å−4 1.38× 10−6 Å−4

∫
|Φ(r,r,r)|2 d2r∫
|Φ|2 d6R 3.22× 10−7 Å−4 2.37× 10−7 Å−4

|∫ χ1s(r)Φ(0,0,r) d2r|2∫
|Φ|2 d6R×

∫
|χ1s|2 d2r 6.94× 10−7 Å−4 1.21× 10−6 Å−4

|∫∫ χ1s(r
′)Φ(r,r,r′) d2r d2r′|2∫

|Φ|2 d6R×
∫
|χ1s|2 d2r 3.54 1.47

∫ |∫ χ1s(r
′)Φ(r,r,r′) d2r′|2d2r∫

|Φ|2 d6R×
∫
|χ1s|2 d2r 5.90× 10−4 Å

−2
3.85× 10−4 Å

−2

|∫ χ2s(r)Φ(0,0,r) d2r|2∫
|Φ|2 d6R×

∫
|χ2s|2 d2r 2.01× 10−8 Å−4 1.13× 10−7 Å−4

|∫∫ χ2s(r
′)Φ(r,r,r′) d2r d2r′|2∫

|Φ|2 d6R×
∫
|χ2s|2 d2r 0.0379 0.0254

∫ |∫ χ2s(r
′)Φ(r,r,r′) d2r′|2d2r∫

|Φ|2 d6R×
∫
|χ2s|2 d2r 1.04× 10−5 Å

−2
1.89× 10−5 Å

−2

IV. The complex state can be written in the form of Eq.
(12), with the substitution χ̃k −→ χ̃0

k, and short-range
electrostatic interactions and interlayer tunneling can be
treated as perturbations to this initial state. Setting
τ ′ = τ and σ′ = σ in Eq. (12), radiative decay is deter-

mined by the matrix element 〈τ,q|Ĥr|D0;kh〉(2), where
|τ,q〉 = a†τ (q) |Ω〉 is the final state in which a photon
of momentum q and the appropriate polarization τ has
been emitted after recombination of the bound electron
with the delocalized hole. The notation |A〉(2)

indicates
that the state includes corrections up to second order in
perturbation theory, in this case from the interlayer tun-
neling (Ĥt) and short-range interaction (Û>intra) terms.

The diagrams of Fig. 3 correspond to those correc-
tions to the wave function that are relevant for radia-
tive recombination in the large-twist-angle regime, where

Eb
D0 � ~2∆K2

2mα
. Following the order of the diagrams in the

figure, and assuming that kh, q � ∆K, the optical ma-
trix element for D0

c′hv recombination is given in terms of
the real-space impurity wave function by

〈τ,q|Ĥr|D0;kh〉(2) =


− γtcc/~c(

Eb
D0 + ∆c

) (
Eb

D0 + ~2∆K2

2mc′

) +
γ′tvv/~c(

Eb
D0 + ∆v + ~2∆K2

2mc′
+ ~2∆K2

2mv′

)(
Eb

D0 + ~2∆K2

2mc′

)

− γ′tvv/~c

∆v

(
∆v + ~2∆K2

2mv′

) +
γ′tvv/~c(

Eb
D0 + ∆v + ~2∆K2

2mc′
+ ~2∆K2

2mv′

)(
∆v + ~2∆K2

2mv′

)


 6πe3χ(0)

ε r′∗S∆K2

√√√√ 4π~c

L
√
q2
⊥ + q2

‖
,

(C1)

We additionally assume that the CB and VB spacings

remain a large scale in the problem, such that ~2∆K2

2mα
�

∆c, ∆v. In this approximation, the third and fourth
terms in Eq. (C1) cancel out, corresponding to diagrams
Fig. 3(c) and (d). Substituting the resulting expres-
sion into Eq. (11) gives Eq. (18), where the probability
that the hole state is occupied is introduced through the
hole density N(kh). This analysis can be carried out for
D0
c′Xvc′ complexes, yielding Eqs. (19) and (20).

The large momentum components introduced by the
short-range interaction terms are irrelevant in the small-
twist-angle regime, which is dominated by the small mo-
mentum sector of the wave function. In this case, the
optical matrix element is obtained from the perturbed
state |D0;kh〉(1), including first-order tunneling correc-

tions [Eq. (10)]. The optical matrix element is

〈τ,q|Ĥr|D0;kh〉 =
1√
S

∫
d2r ei(∆K+kh+q)·rχ(r)

×
√

4π ~ce2

SL q

[
3tvvγ

′

~c∆v
− 3tccγ

~c
(
∆c + Eb

D0

)
]
.

(C2)

Substituting into Eq. (11) leads to Eq. (13), and simi-
lar procedures are used to obtain Eq. (15) for D0

c′Xvc′

complexes. Notice that the second radiative channel for
D0
c′Xvc′ discussed in the main text does not apply to this

regime. The small-twist-angle analogue to the recoil pro-
cess due to electron-electron interactions involves a small
momentum transfer, and is thus already contained in the
unperturbed state |D0X〉.
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Appendix D: Phonon effects on radiative
recombination

The discussion of Appendix C can easily be adapted
to e-ph interactions, Ĥe-ph [Eq. (21)]. In the following
we adopt the assumptions introduced in Appendix C;

namely, ~2∆K2

2mα
, Eb

D0 � ∆c, ∆v. In addition, we use

~ωΛ,ν(ξ) � ∆c, ∆v, which is always valid in our cases
of interest.

In the large-twist-angle regime, consider the process
whereby the electron in a D0

c′ bridges the valley mismatch
by emitting a phonon in mode ν and momentum ξ, with
ξ ∼ ∆K, in either the electron (Λ = e) or hole (Λ = h)
layer. The electron recombines with a delocalized hole of
momentum kh, emitting a photon of momentum q and
polarization µ, leading to the final state

|τ,q; ν, ξ〉Λ = a†τ (q)b†Λ,ν,−ξ |Ω〉 . (D1)

Considering the phonon energies presented in Table V, in

this regime we have ~2∆K2

2mα
� ~ωΛ,ν , and the radiative

matrix elements with phonon emission can be approxi-
mated by

h〈τ,q; ν, ξ|Ĥr|D0;kh〉 ≈
χ̃(kh + ξ −∆K)

S
gv,ν(∆K)

×
√

4π~c
SL q

γ′tvv
~c∆v

[
6mv

~2∆K2
− 6mc′

~2∆K2

]
,

(D2a)

e〈τ,q; ν, ξ|Ĥr|D0;kh〉 ≈
χ̃(kh + ξ −∆K)

S
gc′,ν(∆K)

×
√

4π~c
SL q

γtcc
~c∆c

[
6mc′

~2∆K2
− 6mv

~2∆K2

]
.

(D2b)

The distinct final states lead to two independent (nonin-
terfering) contributions to the radiative decay rate, ob-
tained by substituting Eqs. (D2a) and (D2b) into Eq.
(11). The result is Eq. (24a), and a similar proce-
dure leads to Eq. (24b) for the phonon-assisted decay
of D0

c′Xvc′ complexes.

The situation is more subtle in the small-twist-angle
regime, where ~ωΛ,ν

<∼ ~2∆K2/(2mα), and the phonon
dispersion becomes important. The optical matrix ele-
ments are

h〈τ,q; ξ, ν|Ĥr|D0;kh〉 ≈
χ̃(k + ξ −∆K)

S
gv,ν(ξ)

×
√

4π~c
SL q


 3γ′tvv

~c∆v

(
~2ξ2

2mv
+ ~ων(ξ)

)

− 3γtcc

~c∆c

(
~2ξ2

2mv
+ ~ων(ξ) + Eb

D0

)


 ,

(D3)

e〈τ,q; ξ, ν|Ĥr|D0;kh〉 =

√
4π~c
SL q

χ̃(k + ξ −∆K)

S

×
[

3γtccgν,c′(ξ)

~c∆c

(
~ων(ξ) + Eb

D0

) − 3γ′tvvgν,c′(ξ)

~c∆v

(
~ων(ξ) + Eb

D0

)
]
.

(D4)

Following Ref. [31], we use tcc � tvv to simplify these
expressions. Using Fermi’s golden rule and integrating
over the photon momentum we obtain the decay rates

Γ<,νD0h ≈
∑

ξ


 |gv,ν(0)|2
(

~2ξ2

2mv
+ ~ων

)2 +
|gc′,ν(0)|2

(
~ων + Eb

D0

)2




×
∫
d2r

∫
d2r′ ei(ξ−∆K)·(r′−r)χ(r)χ∗(r′)

× e2

~c
12Ẽgnh

~S

[
γ′tvv
~c∆v

]2

; ν = LO, HP,

(D5a)

Γ<,LA
D0h ≈

∑

ξ


 |gv,LA(ξ)|2
(

~2ξ2

2mv
+ ~ cLAξ

)2 +
|gc′,LA(ξ)|2
Eb

D0
2




×
∫
d2r

∫
d2r′ eiξ·(r

′−r)χ(r)χ∗(r′)

× e2

~c
12Ẽgnh

~S

[
γ′tvv
~c∆v

]2

,

(D5b)

for optical and acoustic phonon modes, respectively.
The divergence at ξ = 0 in Eq. (D5b) makes the first

term dominant in the sum over ξ, and we can neglect
the second. The sum can be evaluated exactly in the
continuous limit. Defining F(x) = −x[Y1(x) + H−1(x)],
where Hn(x) and Yn(x) are the nth Struve function and
Bessel function of the second kind, respectively, we obtain

Γ<,LA
D0h ≈

e2

~c
3Ξ2

v Ẽgmvnh

~3ρc2LA

[
γ′tvv
~c∆v

]2

×
∫
d2r

∫
d2r′ eiξ·(r

′−r)χ(r)χ∗(r′)F
(

2mv~cLA|r′−r|
~2

)
.

(D6)

From the values reported in Table V we find that the
function F in the integrand decays over a characteristic
length scale of 100 nm, much greater than the spread of
the localized wave function χ(r). Therefore, to a good
approximation, we can substitute F(0) = 2/π to evalu-
ate the integral. The final results for all phonon modes
considered in Eqs. (25a) and (25b), and Eqs. (26a) and
(26b) are obtained by a similar procedure.

Appendix E: Finite-element calculation of two body
states in heterobilayer system

The Schrödinger equation for two particles interacting
through a radially symmetric potential U(r) is given by
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FIG. 10. Probability distributions (|χ(r)|2) of the
first two radially symmetric donor atom states in
hBN/MoSe2/WSe2/hBN. The solid lines were obtained us-
ing the full bilayer potential Eq. (1a), and correspond to
states with binding energies Eb

1s = −229.03 meV and Eb
2s =

−61.73 meV. The dashed lines were obtained using the ap-
proximate intralayer Keldysh form Eq. (A12).

[6],

[
− ~2

2m1
∇2

e −
~2

2m2
∇2

h − e2U(r12)

]
Ψ = EΨ, (E1)

where the form of the interaction U between charge carri-
ers is explained in Appendix A 2, depending on the layer
in which each particle is found.

Transforming the coordinates to the relative motion
r = r1 − r2 and the center-of-mass motion R =
m1r1+m2r2
m1+m2

allows separation of the Schrödinger equa-
tion to the center-of-mass part whose solution is given
by the plane wave φ(R) = 1√

S
eiK·R and the energy

E = ~2K2

2(m1+m2) , and the relative-motion part given by

[
− ~2

2µ
∇2 − e2U(r)

]
Ψ = EΨ, (E2)

where µ = m1m2/(m1 +m2) is the reduced mass.
Transforming the equation into dimensionless quanti-

ties [6, 23] using the excitonic Bohr radius a∗0 = ε~2

µe2 and

the excitonic Rydberg energy R∗y = µe4

2ε2~2 gives

[
−∇̃2 − 1

R∗y
U(a∗0r̃)

]
Ψ = ẼΨ. (E3)

where r̃ = r/a∗0 and Ẽ = E/R∗y. Using separation of
variables the general solution is given by

Ψ(r) = R(r)Φ(φ), (E4)

where the angular part solution is

Φ(φ) =
1√
2π
eilφ. (E5)

l = 0,±1,±2, . . . is the azimuthal quantum number with
Φ(φ) being an eigenfunction of the angular momentum
operator Lz = −i~ ∂

∂φ with eigenvalue ~l. The equation

for the radial part is

−R′′(r̃)− 1

r̃
R′(r̃) +

l2

r̃2
R(r̃)− ṽ(r̃)R(r̃) = ẼR(r̃), (E6)

where ṽ(r̃) = U(a∗0r̃)/R
∗
y. To solve Eq. (E6) numeri-

cally we use the substitution u(r̃) = R(r̃)r̃, allowing us
to impose Dirichlet boundary conditions: u(r̃) = 0 at
r̃ = 0 and r̃ = ∞. The equation can be solved using
the finite-element method implemented in Mathematica
[52]. For the charged donor interacting with an elec-
tron in the MoSe2 layer, we have µ = m′c, and we solve
Eq. (E6) using both the approximate Keldysh interaction
and the full bilayer potential for the intralayer interaction
between the donor and electron. The normalized prob-
ability distributions for the first two radially symmetric
states (1s, 2s) obtained using both potentials are plotted
in Fig. 10.



Chapter 6

Multilayer films of TMDCs

6.1 Introduction

Quantum wells formed from growing heterostructures of conventional III-V semicon-

ductors have been extensively studied and applied for various optoelectronic devices

such as infrared photo detectors and infrared quantum cascade lasers, utilising the in-

tersubband transitions [70, 71]. Two dimensional materials and TMDCs in particular,

provide an alternative and superior approach in terms of versatility, fabrication and

functionality, in the form of van der Waals quantum wells, where the coupled layers re-

sult in splitting of the conduction and valence bands into multiple subbands. Stacking

few-layers of TMDCs results in shifting of the valence band edge from the K point to

the Γ point, and the conduction band edge to near the Q valleys. In order to describe

the subbands and the intersubband transitions in few-layer TMDCs for both p-doped

and n-doped samples, we construct a hybrid k ·p-tight binding model for the conduc-

tion and valence subbands in multilayer 2H-stacked TMDCs, which we parametrise

using DFT calculations of the four main TMDCs. Using the developed model we find

the intersubband spacings and their dependence on the number of layers, we describe

the symmetry related selection rules for intersubband transitions, we address issues of

broadening for the absorption line shapes due to the subbands dispersions and due to

phonon relaxation, and obtain the absorption spectrum for few-layer films.

We find that the four studied TMDCs cover densely the spectrum range 2 µm <

λ < 30 µm for the first intersubband transition in few-layer films consisting ofN = 2−7

layers, therefore allowing to extend the applicability of TMDCs from the visible range

121
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direct band gap, to the infrared range in the few-layer subbands. Additionally, we

find a dispersion broadening effect, which is the dominant broadening source at room

temperature (∼ kBT ), with the phonons providing a weaker contribution of ∼ few

meV, making few-layer TMDCs promising for optoelectronic device applications in

the infrared and far-infrared spectral range.

6.2 Intersubband optics in few-layer films of TMDCs

The results presented in this chapter are to be submitted in: “Hybrid k·p–tight binding

model for subbands and infrared intersubband optics in few–layer films of transition

metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2”, (2018), submitted.

My contribution to this work: Performed the parametrization and fitting of the model

to the DFT calculations, prepared all the figures, analysed the results and written the

manuscript.

Full author list: M. Danovich, D. Ruiz-Tijerina, C. Yelgel, V. Zólyomi, V. I. Fal’ko

Author contributions: C.Y. and V. Z. provided the DFT band structure calculations.

D.T. contributed to the writing of the manuscript, written appendix B and C, and to

overall discussion of the calculations.



Hybrid k · p-tight binding model for subbands and infrared intersubband optics in
few–layer films of transition metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2

Mark Danovich,1 David A. Ruiz-Tijerina,1 Celal Yelgel,1 Viktor Zólyomi,1 and Vladimir I. Fal’ko1

1National Graphene Institute, University of Manchester, Booth St E, Manchester M13 9PL, UK
(Dated: March 23, 2018)

We present a DFT-parametrized hybrid k·p–tight binding model (HkpTB) for electronic properties
of atomically thin films of transition–metal dichalcogenides, 2H-MX2 (M=Mo, W; X=S, Se). We use
this model to analyze intersubband transitions in p- and n-doped 2H−MX2 films and predict the
lineshapes of the intersubband excitations, determined by the subband–dependent two-dimensional
electron and hole masses, as well as excitation lifetimes due to emission and absorption of optical
phonons. We find that the intersubband spectra of atomically thin films of the 2H-MX2 family with
thicknesses of N = 2 − 7 layers densely cover the infrared spectral range of wavelengths between
2 µm and 30 µm.

I. INTRODUCTION

The 2H-MX2 transition metal dichalcogenide com-
pounds (M=Mo, W; X=S, Se) are layered materials,
where chalcogens and metal atoms form covalent bonds
within 2D layers with hexagonal lattice structure, and
neighbouring layers couple weakly through electrical
quadrupole and van der Waals interactions. This fea-
ture of chemical bonding makes atomically thin films of
MX2 sufficiently stable for extensive experimental stud-
ies aimed at their implementation in various optoelec-
tronic devices1–3. In those recent studies, the closest
attention has been paid to the inter-band optical prop-
erties of the monolayer transition metal dichalcogenide
(TMD) crystals4–7, due to their direct band gap8, valley-
spin coupling9–11 and long spin and valley memory of
photo-excited carriers12, spiced up by the Berry cur-
vature effects for electrons and excitons in these two-
dimensional semiconductors13. This is because in mono-
layer MoS2,MoSe2,WS2, and WSe2 the valence and con-
duction band edges both appear at the Brillouin zone
(BZ) corners K and K ′, where the electronic Bloch states
carry intrinsic angular momentum.

Thicker crystals of 2H-MX2 quickly lose the direct
band gap property upon increasing the film thickness
to two or three layers.14–21 Density functional theory of
few-layer transition metal dichalcogenides predicts17,19

that for holes the band edge relocates to the Γ-point,
whereas for electrons it appears at six points situated
somewhere near the Q–points at the middle of each ΓK
segment (see inset in Fig. 1). This has been demon-
strated by studies of Shubnikov–de Haas oscillations in n-
doped MoS2.22 While the indirect character of few-layer
TMD band structures suppresses their inter-band photo
response, the multiplicity of subbands n|N (1 ≤ n ≤ N)
at the conduction and valence band edges of the N–
layer crystal, open a new avenue for optical studies of
atomically–thin TMD films.

Here, we analyse theoretically intersubband transitions
in few-layer MoS2,MoSe2,WS2 and WSe2, and show that
the absorption/emission spectra of the primary transi-
tions in p- and n-doped crystals (Fig. 1) densely cover
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FIG. 1. Energy spacings between the first two conduc-
tion (filled symbols, solid lines) and valence (empty symbols,
dashed lines) subbands 1|N and 2|N as a function of num-
ber of layers N of the four TMDs, corresponding to n and
p-doping, respectively, for 2 ≤ N ≤ 7. Both axes are in log
scale, showing the approximate quadratic dependence of the
spacings on the number of layers. The left vertical axis shows
the wavelength λ in µm, corresponding to the energy spacings,
and the right vertical axis shows the energy spacings in meV.
The inset shows the building block of 2H-MX2 bulk crystals,
composed of two monolayers with metal atoms in the middle
and chalcogens in the outer sublayers of each monolayer, and
the Brillouin zone with the Γ-point and Q-valleys highlighted,
corresponding to the conduction and valence band edges.

the infrared (IR) spectrum down to the far-infrared
range (FIR) of photon energies. The analysis of sub-
band properties of few–layer 2H-MX2 presented in this
paper is based on the hybrid k·p theory–tight-binding
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model (HkpTB) approach, recently applied to the de-
scription of multilayer films of post-transitional metal
chalcogenides (such as InSe and GaSe).23,24 This ap-
proach consists of minimal k · p theory Hamiltonians for
2H-MX2 monolayers,25,26 supplemented by a k · p ex-
pansion of the interlayer hopping near the relevant point
(here, Γ or Q) in the BZ, with all parameters fitted to
DFT-calculated few–layer dispersions, and kz dispersions
in bulk crystals.

First, in Section II we describe the lattice structure and
discuss symmetries of few–layer 2D crystals of 2H–MX2,
especially the difference between films with odd and even
numbers of layers and the corresponding degeneracies in
their band structures. The DFT–parametrised HkpTB
models for few–layer TMDs are formulated in Sections
III and IV for the valence band edge (holes) near the
Γ–point and for conduction band (electrons) near the Q-
points, respectively.

We use these models to calculate subband energies, dis-
persions and wave functions of electron/hole subbands in
N–layer crystals of all four 2H–MX2 compounds, and op-
tical oscillator strengths for radiative intersubband tran-
sitions. Furthermore, we analyse the inelastic broadening
due to optical phonon emission, and the resulting spec-
tral line shapes of IR/FIR absorption by p- and n-doped
2H–MX2 films. We find that the intersubband relax-
ation rates, determined by electron–phonon interactions,
are much slower (one to two orders of magnitude) than
the intra–subband relaxation in the same materials,27,28

and also these are an order of magnitude slower than
intersubband relaxation of electrons and holes in III–V
semiconductor quantum wells.29 Also, in Section III B
we show that the difference between the two-dimensional
masses m1|N and m2|N of electrons and holes in con-
secutive subbands leads to an additional temperature–
dependent broadening of the intersuband transitions,

σ ∼
∣∣∣1− m1|N

m2|N

∣∣∣max{kBT, εF }, which appears to be the

dominant intrinsic broadening effect for the IR/FIR ab-
sorption by 2H-MX2 films at room temperature.

II. MULTILAYERS OF HEXAGONAL
TRANSITION METAL DICHALCOGENIDES:

OVERVIEW

The lattice structure of monolayer TMDs
MX2 (M = Mo,W; X = S,Se) contains two hexago-
nal sublattices of metal and chalcogen atoms in its unit
cell, as shown in Fig. 2b. The chalcogens form two
sublayers, one above and one below the metal sublayer,
forming a trigonal prismatic structure with the metal
atom connected to three chalcogens above and below.
The monolayer point group symmetry is D3h, consisting
of C3 rotations, σv in–plane mirror reflections, and σh
out–of–plane mirror reflections. The most common bulk
allotrope for these transition metal dichalcogenides has
2H–stacking,30 built by adding subsequent layers rotated
by 180◦ with respect to the centre of the hexagon,

Trilayer

(a)

(b)

a

M

X

c

2

Bilayer

Monolayer

(c)

FIG. 2. (a) Crystal structure of a bilayer 2H–stacked TMD
(MX2), the building block of multilayer TMDs, viewed from
the side and (b) top. M and X represent the metal and chalco-
gen atoms, respectively. (c) Brillouin zones of the two mono-
layers in the 2H–stacked bilayer rotated by 180◦ relative to
each other, and schematics of the band dispersions at the va-
lence band Γ–point and conduction band Q–point, including
the six symmetry–related Q–valleys and spin–orbit splitting.
(d)–(f) DFT band structures of monolayer, bilayer and tri-
layer WS2, showing the transition from direct–gap (K −K)
monolayer, to indirect–gap (Γ − Q) multilayer semiconduc-
tor. At the Γ–point, we label the different valence bands
in the monolayer and the irreducible representations of the
D3h point group.25 The bilayer and trilayer valence subbands
are further labelled according to the subscript notation n|N ,
where n is the subband number and N the number of layers.
For odd number of layers (N = 1, 3), where spin–orbit split-
ting is present, the conduction subbands near the Q–point are
coloured according to the spin projection quantum number sz,
with red (blue) corresponding to s =↑ (s =↓), giving a total
of 2N spin–polarized states. Kramer’s doublets are given by
Es(k) = E−s(−k). For N = 2 all bands are spin degenerate,
resulting in N doubly-degenerate states, Es(k) = E−s(k).

resulting in a structure where the chalcogen atoms from
one layer are directly above or below metal atoms in
the other layer (See Fig. 2a,b). The interlayer distance
c
2 , with c the out–of–plane lattice constant, is shown in
Fig. 2a, and Fig. 2b shows the in–plane lattice constant
a. The resulting 3D layered crystal has a bipartite
structure with two monolayers in the unit cell, belonging
to the space group P63/mmc.

Multilayer TMDs with an even number of layers be-
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long to the point group D3d, which contains spatial inver-
sion (r → −r) but lacks out–of–plane mirror symmetry.
The combination of spatial inversion and time reversal
symmetry prescribed at zero magnetic field results in a
constrain on the spin splitting of the electronic states
for even number of layers, Es(k) = E−s(k), where s is
the spin projection quantum number, such that all states
throughout the BZ must be spin degenerate. Similarly to
the monolayer case, multilayer films with an odd number
of layers belong to the point group D3h, which contains
the z → −z mirror symmetry σh but lacks spatial inver-
sion symmetry. Therefore, sz is a good quantum number
for which spin degeneracy (present in films with even
number of layers) can be lifted by spin–orbit (SO) cou-
pling. While the SO splitting is absent for bands based
on pz and dz2 orbitals at the Γ–point, it is substantial
near the Q–points, leading to the alternation of subband
properties. That is, the subbands are spin degenerate for
even numbers of layers, resulting in a six–fold degener-
acy of dispersion along the Γ−K line. For odd number
of layers, subband spectra are three–fold degenerate, but
with Es(k) = E−s(−k).

In Figs. 2(d)–(f) we show how the DFT–calculated
band structure of WS2, representative of all four TMDs,
evolves from monolayer to trilayer (DFT band struc-
tures of all four transition metal dichalcogenides are
shown in Appendix F). The DFT calculations were
performed using a plane–wave basis within the lo-
cal density approximation (LDA), with the Quantum
Espresso31 PWSCF ab initio package. We considered
the Perdew–Zunger exchange correlation scheme,32 with
fully–relativistic norm–conserving pseudo–potentials, in-
cluding non–collinear corrections. Pseudopotentials for
Mo, W, S, and Se atoms were generated using atomic
code ld1.x of the PWSCF package.33 The cutoff energy
in the plane–wave expansion was set to 60 Ry, and the
BZ sampling of electronic states was approximated us-
ing a Monkhorst–Pack uniform k–grid of 24 × 24 × 1
for all structures.34 We adopted a Methfessel-Paxton
smearing35 of 0.005 Ry and set the total energy conver-
gence to less than 10−6 eV in all calculations. Spin–
orbit coupling was included in all electronic band struc-
ture calculations. To eliminate spurious interactions be-
tween adjacent supercells, a 20 Å vacuum buffer space
was inserted in the out-of-plane direction. The inter-
layer separations in the four TMDs were taken to be
the experimental values, 6.149 Å,36 6.463 Å,37 6.173 Å,38

and 6.477 Å,39 with LDA-optimised in–plane lattice con-
stants of 3.157 Å, 3.288 Å, 3.161 Å, and 3.291 Å for MoS2,
MoSe2, WS2, and WSe2, respectively.

Using WS2 as an example, Fig. 2 illustrates that a
monolayer MX2 has a direct band gap at the K point of
the BZ. The z → −z mirror symmetry and lack of in-
version symmetry result in SO–split conduction and va-
lence bands, classified by their sz quantum number (Fig.
2d). The large SO splitting at the valence band (VB)
K–point and conduction band (CB) Q–point result from
their metal dxy and dx2−y2 orbital compositions. This is

in contrast to the CB K–point, which is primarily made
of metal dz2 orbitals, resulting in weaker SO splitting.5,26

In a 2H-MX2 bilayer, the combination of spatial inversion
and time reversal symmetry forbids SO splitting, result-
ing in two spin–degenerate subbands (four bands in to-
tal) in the CB and VB, split by the interlayer coupling
(Fig. 2e). Additionally, the interlayer coupling shifts the
band edges to the Γ–point (VB) and in the vicinity of
the Q–point (CB), making indirect gap semiconductors.

In the trilayer 2H-MX2, the valence and conduction
band edges remain at the Γ and near Q points. As shown
in Fig. 2f, the CB subbands are split by SO coupling at
the Q–point due to the lack of spatial inversion symmetry
in the case of odd numbers of layers. The resulting spec-
trum consists of two SO-split subbands in the middle,
and two pairs of nearly spin–degenerate subbands above
and below (see Appendix C for details). For the valence
subbands, however, SO splitting is forbidden exactly at
the Γ–point, due to it being its own time reversal coun-
terpart, resulting in three nearly spin degenerate sub-
bands (exact degeneracy for even N , and spin–splitting
Esz (k) − E−sz (k) ∝ k3 for odd N). This trend, which
consists of the alternation of SO-split (for odd N) and
spin-degenerate (for even N) subbands persists for TMD
films with a larger number of layers, and all the same
features are present in the spectra of all four 2H-MX2

shown in Appendix F. Finally, we note that the in–plane
(2D) carrier dispersions in different subbands n|N (both
on the VB and CB side) are different, which affects the
intersubband absorption line shapes, as we discuss in Sec-
tions III and IV.

III. HOLE SUBBANDS IN P-DOPED
FEW–LAYER TMDS

Fig. 2d shows the monolayer valence bands relevant
for the multilayer description, based on symmetry and
energy considerations. The v and w valence bands are
non-degenerate at the Γ–point, with the v–band com-
posed of the metal dz2 orbital and chalcogen pz orbitals,
whereas the w–band is composed of metal and chalcogen
pz orbitals. Bands v1 and v3 belong to two–dimensional
irreducible representations (Irreps), with the v1 band
composed of chalcogen px, py and metal dxz, dyz orbitals,
and the v3–band formed by chalcogen px, py and metal
dxy, dx2−y2 orbitals.5,25,26 In the multilayer case, the w
and v–bands strongly repel as the w band gets closer in
energy to the v–band. The v1 and v3 bands, on the other
hand, are weakly split with a narrow spread due to their
orbital characters, and are pushed downwards relative to
the v band edge. The two–dimensional Irreps of v1 and v3

allow their coupling with the VB being only through SO
interactions (see Appendix B). These features involving
the symmetry, orbital composition and proximity of the
valence bands, supported by our numerical calculations,
indicate that the VB is most strongly hybridized with
the w–band, while the other valence bands v1, v3, pro-
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FIG. 3. Bulk dispersion of 2H–stacked WS2 along the ΓA
line. The DFT data (points) are well fitted by the two–band
model Eq. (4) (solid lines). The grey points correspond to
the v1 and v3 valence bands. Inset: The first Brillouin zone
of bulk TMDs.

vide corrections in second–order perturbation theory to
the model parameters through the action of SO coupling
(see Appendix B). Additionally, as pointed out in Sec-
tion II, in two–dimensional 2H–MX2 crystals the CB and
VB are almost spin-degenerate at the Γ–point, despite
the fact that atomic SO coupling in TMD compounds is
strong. Therefore, to describe the valence subbands at

the Γ point, we construct a spinless two–band model in-
cluding the v and w bands, fitting the band parameters
and interlayer hopping terms to the DFT calculated band
structure, where SO coupling is included implicitly. As
indicated in Fig. 2d, these bands belong to the A′1 and A′′2
Irreps of the D3h group of the Γ–point,25,26 respectively.
Therefore, bands v and w are respectively even and odd
under σh transformations, and do not mix in the mono-
layer case. However, in multilayers, band mixing across
consecutive layers is allowed by symmetry.

A. HkpTB for the Γ–point valence band edge

The monolayer dispersions of the valence bands σ = v
and w, are described by isotropic parabolic dispersions
with band-dependent effective masses

Eσ(k) = E0
σ −

~2k2

2mσ
. (1)

To construct the multilayer Hamiltonian we include
symmetry–constrained interlayer couplings, given to low-
est orders in k by

tσ(k) = t(0)
σ + t(2)

σ k2; tvw(k) = t(0)
vw + t(2)

vwk
2, (2)

where tv and tw are interlayer intra–band hopping terms,
and tvw couples different bands in two consecutive layers.

The multilayer Hamiltonian is given by

ĤNΓ(k) =
∑

s=↑,↓

∑

σ=v,w

dN/2e∑

n=1

[
Eσ(k) + 2δσ + 2µσ(k)

][
a†nsσ(k)ansσ(k) + Θ(N2 − n)b†nsσ(k)bnsσ(k)

]

−
∑

s=↑,↓

∑

σ=v,w

[
δσ + µσ(k)

] [
a†1sσ(k)a1sσ(k) +

(
1− ϑ(N)

2

)
b†N/2,s,σ(k)bN/2,s,σ(k) + ϑ(N)

2 a†(N+1)/2,s,σ(k)a(N+1)/2,s,σ(k)
]

+
∑

s=↑,↓

∑

σ=v,w

( dN/2e∑

n=1

tσ(k)Θ(N2 − n)
[
a†nsσ(k)bnsσ(k) + H.c.

]
+

dN/2e−1∑

n=1

tσ(k)
[
a†n+1,s,σ(k)bnsσ(k) + H.c.

])

+
∑

s=↑,↓

∑

σ=v,w

dN/2e∑

n=1

tvw(k)Θ(N2 − n)
[
a†nsv(k)bnsw(k)− a†nsw(k)bnv(k) + H.c.

]

+
∑

s=↑,↓

∑

σ=v,w

dN/2e−1∑

n=1

tvw(k)
[
a†n+1,s,w(k)bnsv(k)− a†n+1,s,v(k)bnsw(k) + H.c.

]
,

(3)

where we have defined ϑ(N) = 1 − (−1)N . a
(†)
nsσ(k)

and b
(†)
nsσ(k) annihilate(create) a band–σ electron with

spin projection s and in–plane wave vector k in the odd
and even layers of the nth unit cell, respectively. Ad-
ditional model parameters include the on–site energy

corrections δv and δw, and k–dependent corrections of
the form µσ(k) = µσk

2, for the v and w bands, re-
spectively, which take into account both the pseudo–
interlayer potentials, as well as the spin–flip induced
interband-interlayer hopping (Appendix B). For odd N
the system has bN/2c complete unit cells and a trun-
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cated last unit cell n = dN/2e, where bAc and dAe are
the floor and ceiling functions, respectively. This case
is considered in Eq. (3) through the Heaviside function

Θ(N2 − n), which removes the operators b
(†)
N/2,σ(k) when

N is odd. The minus sign in the last row of Eq. (3) for the
interband interlayer hoppings (tvw) is due to the opposite
parity under z → −z of the v and w bands, described in
Sec. III.

We obtain the model parameters in Eq. (3) by fitting
the results of numerical diagonalization of Eq. (3) to DFT
calculations of the bulk and few–layer dispersions for each
2H-MX2. For example, the DFT bulk kz–dispersion of
WS2 is shown in Fig. 3 for the ΓA cut through the 3D
BZ. The solid lines in Fig. 3 correspond to the bands of
the bipartite Bloch Hamiltonian

HΓ(k, kz) =




Ev(k) + 2δv + 2µv(k) 0 2tv(k) cos (kzc2 ) 2itvw(k) sin (kzc2 )
0 Ew(k) + 2δw + 2µw(k) −2itvw(k) sin (kzc2 ) 2tw(k) cos (kzc2 )

2tv(k) cos (kzc2 ) 2itvw(k) sin (kzc2 ) Ev(k) + 2δv + 2µv(k) 0
−2itvw(k) sin (kzc2 ) 2tw(k) cos (kzc2 ) 0 Ew(k) + 2δw + 2µw(k)


 , (4)

obtained from the model Eq. (3). Eq. (4) is written in
the basis of the v and w bands of layers one and two of
the bulk 2H crystal unit cell. The fitted parameters for
the four TMDs are given in Tables I and II, and detailed
comparisons of the HkpTB model to DFT results for all
four few–layer TMDs are shown in Fig. 4.

Noting that the bulk VB edge is located at the Γ–
point (Fig. 3), the dispersion near the band edge can be
obtained from Eq. (4) as

EΓ(kz,k) ≈ − ~2k2
z

2mv,z
− ~2k2

2mv,xy

(
1 + ζk2

z

)
, (5)

where the bulk parameters are given in terms of the
HkpTB model parameters,

m−1
v,z =

~2

2d2


4t

(0)
vw

2

∆E
+ t(0)

v


 (6a)

is the out–of–plane bulk effective mass, with d = c/2 the

interlayer distance and ∆E = Ev − Ew − 2t
(0)
v + 2t

(0)
w +

2δv−2δw the bulk gap between the top most v and lowest
w bands at the Γ–point.

m−1
v,xy =

[
1 +

4mv

~2

(
t(2)
v − µv

)]
m−1
v , (6b)

is the in–plane bulk effective mass, and

ζ = − ~−2mvd
2

[1 + 4mv

~2 (t
(2)
v − µv)]

{
2t(2)
v +

4~2t2vw
∆E2

mw −mv

mvmw

+16tvw

(
t
(2)
vw

∆E
+

tvw
∆E2

(t(2)
v − t(2)

w + µw − µv)
)}

,

(6c)

is an anisotropic non-linearity factor. (The fitted values
of these parameters directly to the DFT calculations are
given in Table I).

TABLE I. Model parameters fitted to DFT data for the mono-
layer valence bands Ev(k) and Ew(k), and bulk valence band
dispersion for the four TMDs. The monolayer parameters
include the band edges energy difference E0

v − E0
w, and the

effective masses mv,mw given in terms of the free electron
mass m0. The 3D bulk parameters include the out-of-plane
and in-plane effective masses mv,z,mv,xy, respectively, and
the in–plane dispersion non–linearity parameter ζ.

E0
v − E0

w [eV] mv [m0] mw [m0]
mv,z [m0] mv,xy [m0] ζ [Å2]

MoS2 1.75 3.726 0.304
1.04 0.693 -5.24

MoSe2 1.56 5.575 0.505
1.42 0.786 -5.99

WS2 2.08 2.885 0.353
0.840 0.615 -5.86

WSe2 1.81 3.420 0.760
1.08 0.700 -5.45

TABLE II. Model parameters fitted to DFT data for the va-
lence band interlayer hopping terms tv(k), tw(k) and tvw(k).
δv, δw, µv, and µw are the on–site energy offsets due to the
pseudo–interlayer potential and spin–flip coupling terms.

t
(0)
v [eV] t

(0)
w [eV] t

(2)
v [eVÅ

2
] t

(2)
w [eVÅ

2
]

t
(0)
vw [eV] t

(2)
vw [eVÅ2] δv [meV] δw [meV]

µv [eVÅ2] µw [eVÅ2]
MoS2 -0.333 0.592 1.744 2.684

0.432 -1.206 -62.18 -41.43
-0.351 6.770

MoSe2 -0.307 0.657 1.830 2.626
0.453 -1.140 -29.13 -10.85

-0.261 2.736
WS2 -0.322 0.574 1.718 3.205

0.404 -1.226 -36.98 -48.89
-0.614 5.834

WSe2 -0.291 0.649 1.814 -1.382
0.4309 -0.049 -25.27 -69.93

-0.519 0.192
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Then, the subband energies and dispersions in TMD
films with N � 1 can be analysed by quantizing hole
states with dispersions described by Eq. (5) in a slab of
thickness L = Nd. When doing so, one has to comple-
ment Eq. (5) with the general Dirichlet-Neumann bound-
ary condition for the standing waves of holes at both film
surfaces

[±νd∂zψ(z) + ψ(z)]z=±L
2

= 0, (7)

where the ± correspond to the top and bottom layers, re-
spectively, and ν is a dimensionless parameter. Assuming
a solution of the form ψ(z) = ueikzz + ve−ikzz, one finds
from Eq. (7) that kz in Eq. (5) obeys

Lkz + 2 arctan(νkzd) = πn, (8)

where the integer n is the subband index. For large num-
ber of layers and low-energy subbands (near the band
edge), kz ∼ 1

L � 1
d , and arctan(νkzd) ≈ νkzd, so that

we can approximate

kz ≈
πn

d(N + 2ν)
, (9)

leading to the subband energies and dispersions

En�N |N (k) = − ~2

2mv,z

π2n2

d2(N + 2ν)2

− ~2k2

2mv,xy

[
1 +

ζπ2n2

d2(N + 2ν)2

]
.

(10)

The large–N asymptotics of the separation between
the lowest two subbands, |E1|N −E2|N |, was used to de-
termine the value of the boundary parameter ν for holes
in each TMD, resulting in ν ≈ 0 for MoS2 and MoSe2,
ν = 0.11 for WS2, and ν = 0.007 for WSe2, using the
dispersions and lowest intersubband splittings shown in
Figs. 4 and 5. The good agreement between the full
HkpTB model and the asymptotic analysis shown in Fig.
5 enables us to describe the main intersubband transition
1|N → 2|N in p-doped N-layer 2H-MX2 as

|E1|N − E2|N | =
3π2~2

2mv,zd2(N + 2ν)2
. (11)

Furthermore, the hole subband effective masses

m−1
n|N = m−1

v,xy

[
1 +

ζπ2n2

d2(N + 2ν)2

]
, (12)

obtained from Eq. (10), describe well the subband de-
pendence of the in-plane masses, as seen in Fig. 4.

B. Selection rules for intersubband transitions, and
dispersion–induced line broadening

Next, we use the model developed above for the de-
scription of hole subbands to study intersubband optical

transitions, electron-phonon relaxation, and absorption
line shapes of IR/FIR light.

The optical transition amplitude between two given
subbands n and n′ is determined by the out-of-plane
dipole moment

dn,n
′

z (k) = e〈n,k|z|n′,k〉

= e
N∑

j=1

∑

σ=v,w

zjC
∗
n,j,σ(k)Cn′,j,σ(k),

(13)

where N is the total number of layers, zj denotes the z
coordinate of layer j, and Cn,j,σ(k) are the components
of the nth subband eigenstate. The calculated dipole mo-
ment matrix element for the first two intersubband tran-
sitions is plotted in Fig. 6 as a function of the number of
layers. The selection rules for intersubband transitions
driven by out–of–plane polarized light are determined by
the odd parity of z under both spatial inversion and mir-
ror reflection (σh). The subband states for even and odd
number of layers also have a definite parity under spatial
inversion and mirror reflection, respectively, due to the
crystal’s symmetry. Therefore, intersubband transitions
between same parity subbands are forbidden, as shown in
Fig. 6 for the first two intersubband transitions. All this
makes the 1|N → 2|N transition the dominant feature in
the IR/FIR absorption by thin TMD films.

The intersubband absorption line shape is affected by
the difference between the effective masses of subbands
1|N and 2|N . The lighter in-plane hole mass in the initial
state (1|N subband) as compared to the final state (2|N
subband) spreads the absorption spectrum toward lower
energies. Heavy p-doping of the TMD film or Boltzmann
distribution of the holes in the case of light p-doping,
sets the lower limit for the line width of the 1|N → 2|N
absorption line, which we call the density of states (DoS)
broadening

σ =

(
1− m1|N

m2|N

)
max{εF , kBT} log 2. (14)

Here, kB is the Boltzmann constant, T is the tempera-
ture, and m1, m2 are the effective masses of the first and
second subbands. This limit for the line width is illus-
trated in Fig. 7a for N-layer 2H-MX2 at room tempera-
ture. We note here that this “density of states” broad-
ening is similar to the inhomogeneous broadening, in the
sense that it can be overcome by placing the TMD film in-
side an optical resonator that would select intersubband
modes with particular values of in-plane momentum k.

C. Broadening due to electron–phonon intra– and
intersubband relaxation

In contrast to the elastic DoS broadening, phonon–
induced intra– and intersubband relaxation broaden the
absorption line in a way that cannot be avoided by a
clever choice of the electromagnetic environment. Below
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FIG. 4. Model dispersions (solid lines) near the Γ–point fitted to the DFT calculated (points) for the four TMDs (rows) for
three to six layers (columns).

we consider emission/absorption of homopolar (HP), lon-
gitudinal (LO) and out-of-plane (ZO) optical phonons,
which we assume to be dispersionless. This choice is mo-
tivated by the fact that these are the strongest coupled
modes in TMDs, as established by earlier studies.27,40

Also, we take phonon modes of few-layer films as in-
dependent and degenerate. This approximation is jus-
tified by the fact that splittings due to hybridization
between layers are much smaller than the monolayer
phonon frequency.41

The hole-phonon couplings for a phonon in mode µ =
HP, LO, or ZO in layer j, interacting with a hole in layer
i, are given by (see Appendices D and E)

gj,iHP(q) = δij

√
~

2ρωHP
Dv, (15a)

gj,iLO(q) =

√
~

2ρMr

M ωLO

2πie2Z(−1)j

A(1 + r∗q)
e−qd|i−j|, (15b)

gj,iZO(q) =

√
~

2ρMr

M ωZO

2πe2Zz
A

e−qd|i−j|
i− j
|i− j| , (15c)

where ωµ denotes the corresponding phonon frequency; ρ
is the mass density of the material; Dv is the deformation
potential in the valence band; A is the unit cell area; M
and Mr are the total unit-cell mass and reduced mass of
the metal and two chalcogens, respectively; Z and Zz are
the in-plane and out-of-plane Born effective charges, re-
spectively; and r∗ is the screening length in the material.
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FIG. 5. Energy spacings between the first and next few va-
lence subbands for the four TMDs, as a function of the number
of layers N . The ν parameter corresponding to each TMD is
given in each panel. The solid lines for the first two transi-
tions are obtained using Eq. (10), showing a good fit between
the model and DFT.
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FIG. 6. Out–of–plane dipole moment matrix elements for the
VB subbands, for the first two intersubband transitions 1→ 2
(solid) and 1→ 3 (dashed).

The various parameters taken from Refs. 27, 40, 42, and
43 are given in Table III.

The phonon induced broadening is determined by the
lifetime of the hole in the excited subband state, which
includes contributions from intersubband relaxation due
to emission (low-T and high-T ) and intrasubband absorp-
tion (high-T ) (Fig. 7b). We note that intrasubband emis-
sion contributions are thermally activated, since they re-
quire carriers to be thermally excited to energies higher
than the corresponding phonon energy. The typical en-
ergy of thermally distributed carriers at room tempera-

� �
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FIG. 7. (a) Absorption line widths for VB subbands at room
temperature (300 K) as a function of number of layers for the
four TMDs, considering only DoS broadening. (b) Phonon
induced broadening at room temperature (T = 300 K) due to
intersubband emission and intrasubband absorption of optical
phonons modes (top to bottom) HP, LO and ZO, for the four
TMDs as a function of number of layers N , with the combined
broadening shown in bottom panel.

ture is 1
2kBT ∼ 13 meV, whereas the phonon energies

are of order 30−50 meV (Table III), making this process
irrelevant. Similarly, the process involving intersubband
absorption from the second subband to the third is sup-
pressed by the larger intersubband spacings, as compared
to the phonon energies and the first intersubband spac-
ings for N <∼ 10, and therefore will not be considered.

The phonon–induced broadening is accounted for by

γ =2π
∑

µ,q,j

∣∣∣∣∣
∑

i

∑

σ=v,w

gj,iµ (q)C∗n,i,σ(q)Cm,i,σ(0)

∣∣∣∣∣

2

× {[1 + nT (~ωµ)]δ [Em(0)− En(q)− ~ωµ]

+δnmnT (~ωµ)δ [Em(0)− Em(q) + ~ωµ]} ,

(16)

where the sums are over the phonon modes µ =
HP, LO, ZO, the phonon wave vector q and the layer
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TABLE III. Electron-phonon coupling parameters for LO, HP, and ZO phonon modes. ωHP, ωLO and ωZO are the HP, LO and
ZO mode energies; ρ is the mass density; Dv, Dc are the valence and conduction deformation potentials; Z, Zz are the in-plane
and out of plane Born effective charges; r∗ is the screening length; Mr/M is the ratio of the reduced mass of the metal and
chalcogens to the total unit cell mass; and A is the unit cell area.

~ωHP [meV] ~ωLO [meV] ~ωZO [meV] ρ [g/cm2] Dv [eV/Å] Dc [eV/Å] Z Zz r∗ [Å] Mr/M A [Å2]
MoS2 51 49 59 3.1× 10−7 3.5 7.1 1.08 0.1 41 0.24 8.65
MoSe2 30 37 44 4.5× 10−7 3.8 7.8 1.8 0.15 52 0.249 9.37
WS2 52 44 55 4.8× 10−7 1.5 3.4 0.47 0.07 38 0.29 8.65
WSe2 31 31 39 6.1× 10−7 2.2 2.7 1.08 0.12 45 0.25 9.37

number 1 ≤ j ≤ N . Cn,i,σ are the components of the nth

subband eigenstate on layer i in band σ, and nT (~ωµ)
is the Bose-Einstein distribution for a phonon in mode
µ at temperature T . The first term in the curly brack-
ets describes intersubband phonon emission, whereas the
second term describes intrasubband phonon absorption.

The resulting phonon-induced broadenings at room
temperature are shown in Fig. 7b. The main contri-
bution comes from intersubband relaxation, with intra-
subband absorption suppressed by the phonon occupa-
tion number. The intersubband LO phonon contribution
dominates the broadening due to the strong coupling
attributed to the large in-plane Born effective charge,
and the long range nature of the coupling. The reduced
broadening for N = 2 is due to the large intersubband
spacing, which suppresses intersubband relaxation, and
the fact that the second subband is almost flat, which
suppresses intrasubband absorption. The peaks in the
broadenings for certain numbers of layers correspond to
near resonances between the phonon energies and the in-
tersubband spacings. Phonon broadening is seen to be
most detrimental for MoSe2 in particular, and in general
for all TMDs at 7 or 8 layers. Beyond this number of
layers, the phonon energies become larger than the inter-
subband spacings, thus preventing intersubband relax-
ation, however, intrasubband absorption is still present
and dominates for N > 7. Finally, we note that the
broadening values are found to be smaller than those
observed in III-V quantum wells,29 implying a weaker
detrimental effect on the absorption/emission line shape
in these materials.

D. Room-temperature absorption spectrum in
p-doped TMD films

The cumulative effect of inelastic (e-ph) and elastic
(DoS) broadening of the intersubband 1|N → 2|N ab-
sorption spectra of lightly p-doped TMD films is de-
scribed by

I(~ω) =
4π

~
|Ez(~ω)|2

∑

k

∣∣d1,2
z (k)

∣∣2 fT (k)

× γ/π

(E1(k)− E2(k)− ~ω)2 + γ2
,

(17)

~! [eV]

I
[a

.u
.]

MoS2 MoSe2

WS2 WSe2

N = 2

N = 3

N = 4

N = 5

FIG. 8. Optical absorption lines for N = 2−5 layers of lightly
p–doped MoS2, MoSe2, WS2, and WSe2 at room temperature
(T = 300 K).

where fT (k) is the Fermi function for hole occupation
in the lowest subband corresponding to hole density nh,
and temperature T (we assume that all higher-energy
hole subbands are empty). The resulting absorption
spectra at room temperature for the four TMDs with
different number of layers are shown in Fig. 8. The
spectra show the combination of DoS broadening, which
produces a tail towards lower photon energies, with the
phonon-induced broadening, most relevant for N > 2,
which gives a small tail towards higher energies, making
the lines more symmetric and reducing their amplitudes.
The smaller phonon couplings in WS2 result in tall, nar-
row and asymmetric line shapes, with intensity increasing
with the number of layers, reflecting the growing dipole
matrix element. This is in contrast to MoSe2, where the
larger phonon induced broadening results in smaller and
more symmetric peaks for N > 2.
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FIG. 9. Bulk dispersion of 2H–stacked WS2 along the Bril-
louin zone path QA, defined by kx = ky = 0 and kz ∈ [0; π/c],
where kx and ky are measured relative to the Q–point, as
shown in the inset. DFT data (points) are well fitted by the
model Eq. (21) (solid line). Inset: The first Brillouin zone of
bulk TMDs.

IV. ELECTRON SUBBANDS IN N-DOPED
FEW-LAYER TMDS

A. HkpTB for the conduction band near the
Q-point

The conduction band edges in monolayer MoS2,
MoSe2, WS2, and WSe2 are located at the K-points,

but accompanied by local dispersion minima that appear
near the six inequivalent points τQ, τC3Q and τC2

3Q,
where τ = ±1, and Q = 2π

3a x̂ is the mid–point between Γ
and K (a is the lattice constant). For a given value of τ ,
there are three valleys connected by C3 rotations about
the BZ centre (Fig. 2c), such that we need only describe
the dispersion near the two points τQ, which are related
by time reversal.

For spin projection s, the monolayer dispersion near
the τQ valley is given by26

Eτs (k) =
~2(kx − qτs )2

2mτ
x,s

+
~2k2

y

2mτ
y,s

+ E0 + τs∆0, (18)

wheremτ
x,s andmτ

y,s are effective masses; E0 is a constant
energy shift; 2∆0 is the spin–orbit splitting between the
spin-up and spin-down band edges; and qτs is the band–
edge momentum relative to the valley along the x̂ axis.
From time reversal symmetry we obtain the dispersion for
the opposite valley as Eτs (k) = E−τ−s (−k), which requires

(α = x, y) mτ
α,s = m−τα,−s and qτs = −q−τ−s .

As described in Sec. II, the 2H–stacked bilayer consists
of subsequent layers rotated by 180◦ with respect to each
other. In reciprocal space, this means that a conduction–
band state of spin projection s and momentum τQ + k
of the first layer will hybridize with its in–plane inver-
sion partner of spin s and momentum −τQ − k in the
second one (Fig. 2c). The multilayer Hamiltonian for the
conduction subbands about τQ is given by

Hτ
NQ(k) =

dN/2e∑

n=1

∑

s=↑,↓

[
Eτs (k) +

(
δn,1 + δn,dN/2e

)
δE
] [
a†n,τ,s(k)an,τ,s(k) + Θ(N2 − n)b†n,−τ,−s(−k)bn,−τ,−s(−k)

]

+

dN/2e∑

n=1

∑

s=↑,↓
tτ (k)Θ(N2 − n)

[
b†n,−τ,s(−k)an,τ,s(k) + H.c.

]
+

dN/2e−1∑

n=1

∑

s=↑,↓
t∗τ (k)

[
b†n,−τ,s(−k)an+1,τ,s(k) + H.c.

]

+

dN/2e−1∑

n=1

∑

s=↑,↓
t′[a†n+1,τ,s(k)an,τ,s(k) + b†n+1,−τ,s(−k)bn,−τ,s(−k)],

(19)

where a
(†)
n,τ,s(k) and b

(†)
n,τ,s(k) annihilate(create) electrons

of spin projection s, in–plane wave vector k and valley
quantum number τ , on the odd and even layers of the nth

bulk unit cell. The alternation of spin indices and hop-
ping terms are a result of the 2H–stacking. The model
is parameterized by the terms in tτ (k) given in Eq. (20),
the interlayer pseudo–potential δE, implemented as an
on–site energy shift at the boundary layers, and the next–
nearest neighbor hopping t′ included to improve the fit-
ting to DFT bands. The interlayer hopping has the form

(see Appendix A)

tτ (k) = t0 + τt1kx + iu1ky + t2k
2
x + u2k

2
y, (20)

up to second order in the in–plane crystal momentum.
Given the lack of σh symmetry for even N , the spin
projection sz is, strictly speaking, not a good quantum
number, and spin mixing is allowed. This is discussed
in Appendix A. However, using an expansion about the
Q–point in our DFT results shows that spin mixing is
much weaker44 than tτ (k), and can be neglected. We
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TABLE IV. Monolayer and bulk conduction band parameters fitted to DFT calculations of the four TMDs. The effective
masses are given in terms of the free electron mass m0. The band edge energy E0 is given relative to the valence band edge
at the Γ–point, and 2∆0 is the spin–orbit splitting at the Q–point. The monolayer parameters include the effective masses in
the x and y directions for the spin split bands, and the band minima offsets q↓ and q↑. The conduction band bulk dispersion
parameters include the in-plane effective masses mc,x,mc,y, and out-of-plane mass mc,z; band minima offsets κ0 and β, and
in–plane dispersion non–linearity parameters ζx and ζy.

mx,↑ [m0] my,↑ [m0] q↑ [10−3Å
−1

] mx,↓ [m0] my,↓ [m0] q↓ [10−3Å
−1

] E0 [eV] 2∆0 [meV]
mc,z [m0] mc,x [m0] mc,y [m0] ζx [Å2] ζy [Å2] κ0 [Å−1] β [10−4 Å]

MoS2 0.595 1.035 20.49 0.666 1.105 7.16 1.994 67.0
0.525 0.550 0.735 -3.90 -7.94 0.0456 -1.3

MoSe2 0.583 1.060 54.21 0.518 1.106 26.93 1.891 21.0
0.500 0.510 0.760 -4.65 -4.26 0.0663 0.32

WS2 0.529 0.722 13.74 0.763 0.892 -20.65 2.059 254
0.510 0.528 0.596 -4.30 -4.12 0.0344 0.53

WSe2 0.468 0.753 49.63 0.676 0.908 1.88 1.94 214
0.466 0.479 0.608 -4.19 -5.80 0.0599 -0.9

TABLE V. Model parameters fitted to DFT data for the con-
duction band interlayer hopping terms. δE is an energy offset
for the first and last layers of the structure that accounts for
surface effects.

t0 [eV] t1 [eVÅ] t2 [eVÅ
2
]

t′ [meV] u2 [eVÅ
2
] δE [meV]

MoS2 0.203 0.213 0.0419
12.7 -0.662 8.90

MoSe2 0.215 0.180 -0.145
20.5 -0.447 -4.29

WS2 0.210 0.233 -0.123
5.24 -0.864 -3.95

WSe2 0.211 0.209 0.231
9.54 -0.797 4.21

also found u1 to be several orders of magnitude smaller
than t1; as a result, we consider tτ (k) to be real.

In the bulk limit we have the bipartite Hamiltonian

Hτ
Q(k, kz) =ε0(k, kz)s0π0 + τ∆(k)s3π3

+ 2tτ (k) cos

(
kzc

2

)
s0π1,

ε0(k, kz) =
E+
↑ (k) + E+

↓ (k)

2
+ 2t′ cos (kzc),

∆(k) =
E+
↑ (k)− E+

↓ (k)

2
,

(21)

where ∆(k) is the k-dependent monolayer spin–orbit
splitting for wave vector k measured relative to the Q–
point; si and πi (i = 0 to 3) are Pauli matrices acting on
the spin and layer degrees of freedom, respectively, and s0

and π0 are the identity in their corresponding subspaces.
The model parameters for the four TMDs were fitted to
the DFT-calculated monolayer and 3D bulk dispersions,
and are presented in Tables IV and V. A sample bulk
fitting is shown in Fig. 9 for WS2, along the path defined
by kx = ky = 0 (Q–point) and kz ∈ [0, π/c], with the
solid line corresponding to the model Eq. (21). Detailed

comparisons of the model to DFT results for few-layer
structures of the four main TMDs are shown in Fig. 10.

As discussed in Sec. II, the global symmetry alterna-
tion between σh for odd N , and spatial inversion sym-
metry for even N , results in the striking qualitative dif-
ferences between the cases with even and odd number of
layers in Fig. 10. The two–fold spin degeneracy observed
for even N is a consequence of spatial inversion and time
reversal symmetry, resulting in Eτs (k) = Eτ−s(k). By con-
trast, σh mirror symmetry for N odd makes sz a good
quantum number, while the lack of inversion symmetry
allows for spin-orbit splitting. Notice also that the two
middle spin–split subbands remain fixed for all odd val-
ues of N , while the rest of the bands are nearly spin–
degenerate. As discussed in Appendix C, these features
can be traced back to the SO splitting in the monolayer
case, and the particular form of Hamiltonians Hτ

NQ(k)
for odd N .

Expanding the lowest eigenvalue of Eq. (21) for valley
τ about kz = 0, corresponding to the bulk conduction
band edge (Fig. 9), the dispersion can be written as

EτQ(k, kz) ≈
~2

2mc,x
(kx − τ [κ0 − βk2

z ])2
(
1 + ζxk

2
z

)

+
~2k2

y

2mc,y

(
1 + ζyk

2
z

)
+

~2k2
z

2mc,z
+ E0

Q,

(22)

where mc,z is the out-of-plane bulk effective mass;
mc,x, mc,y are the in-plane effective masses in the x and
y directions, respectively; ζx, ζy are anisotropic, non-
linearity factors; κ0 and β account for the band minima
offset in the x̂ direction from the Q–point; and E0

Q is a
constant energy shift. These constants are related to our
HkpTB model parameters through the expressions [see
Eq. (18)]

mc,x =
2mτ

x,↑m
τ
x,↓

mτ
x,↑ +mτ

x,↓
, (23a)

mc,y =
2mτ

y,↑m
τ
y,↓

mτ
y,↑ +mτ

y,↓
, (23b)
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FIG. 10. Model dispersions (solid lines) near the Q–point (k = 0) in the kx direction fitted to the DFT calculated (points) for
the four TMDs (rows) for three to six layers (columns). For odd number of layers, the colours indicate to the spin projection
with blue (red) corresponding to spin down (up), whereas for even number of layers both spin projections are degenerate.
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Similarly to the subbands on the valence-band side
(Sec. III), the conduction subbands in TMD films with
N � 1 can be analysed by quantizing the electron states
in a slab of finite thickness L = Nd, with dispersions de-
scribed by Eq. (22). However, note that the coefficients
of Eqs. (23a) through (23h) are independent of spin pro-
jection and valley, and thus not representative of the odd
N case. This is a consequence of the explicit inversion
symmetry of the bulk model Eq. (21). Nonetheless, the
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SO splitting resulting from the lack of inversion symme-
try and the presence of σh symmetry in a system with
odd N , can be introduced through the TMD quantum
well boundary conditions.

The unit cell for 2H crystals contains two layers, which
below we label A and B [see Eq. (19)]. For odd N , in-
version symmetry is broken in opposite ways for the two
layers in the unit cell, given that, as discussed in Sec.
I, they are rotated by 180◦ with respect to each other.
This results in different boundary conditions for electrons
at a given termination of the TMD film, depending on
whether the final layer is of type A or B. This gener-
alises the boundary conditions used for the valence band
at Γ–point [Eq. (7)] to

[± (ν0 + sτν1) d∂zψ
τ
s (z) + ψτs (z)]

z=±L2
= 0, (24a)

for the boundary at z = ±L/2 when the film terminates
on an A layer, and

[± (ν0 − sτν1) d∂zψ
τ
s (z) + ψτs (z)]

z=±L2
= 0, (24b)

when the final layer at position z = ±L/2 is of type B.
Here, ν0 , ν1 � N are dimensionless parameters. This
results in spin– and valley–dependent quantization con-
ditions

ks,τz,n|N ≈
πn

d[N + 2ν0 + sτν1ϑ(N)]
, (25)

where ϑ(N) = 1 − (−1)N gives 0 for even N and 2 for
odd N . Overall, the low-energy spectrum of a thin film
has the form

Es,τn�N |N (k) =
~2

2mc,z

π2n2

d2[N + 2ν0 + sτν1ϑ(N)]2

+
~2

2ms,τ
c,x;n|N

(kx − κs,τn|N )2 +
~2k2

y

2ms,τ
c,y;n|N

,

(26)

where the subband in-plane effective masses in the α =
x, y directions are

[
ms,τ
α,n|N

]−1

≈ m−1
c,α

[
1 +

ζαπ
2n2

d2[N + 2ν0 + sτν1ϑ(N)]2

]
,

(27a)
and the momentum offset from the Q–point is given by

κs,τn|N ≈ τκ0 +
τn2π2 β

d2 [N + 2ν0 + sτν1ϑ(N)]
2 . (27b)

As in the monolayer case, the low-energy subband dis-
persions described by Eq. (26) near the six valleys at
BZ points τQ, τC3Q and τC2

3Q, can be divided into
two triads related by time reversal symmetry, with quan-
tum numbers τ = ±1. The three valleys for a given
τ are connected by C3 rotations, as sketched in the in-
set of Fig. 2. As a consequence, for odd number of lay-
ers, where inversion symmetry is broken and SO split-
ting is parameterized by ν1, the spin and valley degrees
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FIG. 11. Energy spacings between the first and next few
conduction subbands for the four TMDs, as functions of the
number of layers N . The solid lines in each panel corresponds
to Eq. (28) for the main transition between the first and sec-
ond subbands using the DFT bulk parameters, showing good
agreement between the HkpTB model and DFT. Parameters
ν0 and ν1, fitted for N ≥ 4, are given for the four TMDs in
their corresponding panels. Blue (red) points and solid lines
in each panel represent spin down (up) polarized subband
spacings and fittings. Black points and solid line correspond
to subband spacings for even N layers, where subbands are
spin degenerate.

of freedom of the bottom subband are locked, and the
low-energy states have valley degeneracy of godd = 6.
Conversely, for even number of layers the bottom sub-
bands are spin-degenerate, giving a total degeneracy of
geven = 12. These large subband degeneracies and multi-
valley structures, together with the anisitropic disper-
sions found within each valley, may have important im-
plications for the transport and quantum Hall properties
of n-doped multilayer TMDs.45

B. Intersubband transitions and
dispersion–induced line broadening in n–doped

N–layer TMDs

Numerically diagonalizing the HkpTB Hamiltonian in
Eq. (19) with the parameters of Tables IV and V, we
obtain the energy spacings between the first and next
few subbands of TMD films shown in Fig. 11. Using Eq.
(26), we estimate the separation between the lowest two
subbands of a given spin projection s as

Es,τ2|N − E
s,τ
1|N ≈

15π4~2β2

2mc,xd4(N + 2ν0)4
+

3π2~2

2mc,zd2(N + 2ν0)2

− ϑ(N)sτν1
6π2~2

2mc,zd2(N + 2ν0)3
.

(28)
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Similarly, we estimate the splitting between the lowest
subbands of opposite spin as

E−s,τ1|N − Es,τ1|N ≈ sτν1ϑ(N)
2π2~2

2mc,zd2(N + 2ν0)3
. (29)

We used Eqs. (28) and (29) to determine the boundary
parameters ν0 and ν1 for each of the considered TMDs
(MoS2: ν0 = 0.82, ν1 = −0.016, MoSe2: ν0 = 0.76, ν1 =
−0.0055, WS2: ν0 = 0.80, ν1 = −0.0031, WSe2: ν0 =
0.72, ν1 = −0.028). The results are shown with the solid
lines in Fig. 11. The spin–orbit splitting between the
lowest two spin polarized subbands is of order few–meV
for the four TMDs.

Next, we use the model developed above for electron
subbands to study intersubband optical transitions, in-
tersubband electron-phonon relaxation, and the inter-
subband absorption line shapes for IR/FIR light. As
discussed in Sec. III B, the optical transition amplitude
between two given subbands n, n′ is determined by the
out-of-plane dipole moment

dn,n
′

τ,s;z(k) =e〈n, s; τ,k|z|n′, s; τ,k〉

= e
N∑

j=1

zjC
τ,s∗
n,j (k)Cτ,sn′,j(k),

(30)

where N is the total number of layers, zj denotes the z
coordinate of layer j, and Cτ,sn,j(k) are the components

of the nth subband eigenstate of spin projection s and
valley quantum number τ . The calculated dipole moment
matrix element as a function of number of layers for the
first two intersubband transitions is plotted in Fig. 12.

Similarly to the valence subbands case, optical transi-
tions in films with odd number of layers N are allowed
only between states with opposite–parity subband in-
dices, corresponding to opposite parity under σh trans-
formation. The spin-orbit splitting present for odd N
results in a spin selection rule, allowing transitions only
between subbands with the same out–of–plane spin pro-
jection sz. For even N , where σh symmetry is absent,
transitions between subbands with same–parity indices
are allowed. This is in contrast to the VB at the Γ–
point, and is a consequence of the multiple–valley struc-
ture of the CB, which makes it possible to form degen-
erate even and odd (under inversion) combinations of
states, giving a finite dipole moment, as shown in Fig.
12 for the first two intersubband transitions, considering
both spin-down and spin-up polarized subbands. This
makes 1|N → 2|N transition the dominant feature in the
IR/FIR absorption by thin n-doped TMD films.

Similarly to the holes in p-doped TMDs, the line shape
of the electron intersubband absorption in n-doped films
is also affected by the difference between the subband
effective masses of subbands 1|N and 2|N . However, in
contrast to the case of holes, for electrons the line shapes
depend also on the relative in-plane wave vectors of the
conduction subband minima, as well as the anisotropic

d
z
/e

[Å
]

N

1 ! 3

1 ! 2, sz =#
1 ! 2, sz ="

MoS2 MoSe2

WS2 WSe2

FIG. 12. Out–of–plane dipole moment matrix elements for
the first two conduction intersubband transitions, 1 → 2
(solid) and 1 → 3 (dashed). Transitions between spin down
(up) subbands are shown in blue (red).

subband dispersions. The resulting broadening for N -
layer 2H-MX2 films at room temperature, obtained nu-
merically from the calculated line shapes, is shown in Fig.
13a. Our calculations show that the aforementioned DoS
broadening factors result in a typically larger broaden-
ing, which spreads the absorption spectrum towards both
lower and higher energies from the main transition.

C. Electron-phonon relaxation and
room-temperature absorption spectra in n-doped

TMD films

The phonon–induced broadening for conduction sub-
bands m and n, generated by intra– and intersubband
relaxation, is accounted for by

γτ,sn,m = 2π
∑

µ,q,j

∣∣∣∣∣
∑

i

gj,iµ (q)Cτ,s∗n,i (κτ,sm x̂+ q)Cτ,sm,i(κ
τ,s
m x̂)

∣∣∣∣∣

2

× {[1 + nT (~ωµ)]δ [Em(κτ,sm x̂)− En(κτ,sm x̂+ q)− ~ωµ]

+δnmnT (~ωµ)δ [Em(κτ,sm x̂)− Em(κτ,sm x̂+ q) + ~ωµ]} ,
(31)

where κτ,sm is the subband edge offset from the Q–point
of subband m with spin projection s, and gj,iµ are the
electron-phonon couplings for the three phonon modes
µ= HP, LO and ZO given in Eq. (15), with Dv re-
placed by Dc for the HP phonon. The first term
in Eq. (31) describes intersubband relaxation due to
phonon emission, whereas the second describes intrasub-
band phonon absorption in the excited subband. The
phonon induced broadening for the four TMDs obtained
using the electron-phonon coupling parameters in Ta-
ble III are shown in Fig. 13b. The dominant contri-
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FIG. 13. (a) Absorption line widths for CB subbands at
room temperature (T = 300 K) as a function of number
of layers for the four TMDs, considering only DoS broad-
ening. (b) Phonon-induced broadening at room temperature
(T = 300 K) due to intersubband emission and intrasubband
absorption of optical phonons modes (top to bottom) HP, LO
and ZO, for the four TMDs as a function of number of layers
N , with the total broadening shown in the bottom panel.

bution comes from intersubband relaxation due to HP
and LO phonon modes, with a smaller contribution from
the thermally-suppressed intrasubband absorption. The
large HP phonon deformation potential at the Q–point,
as compared to its value at the Γ–point,42 in particular
for MoS2 and MoSe2 (see Table III), results in a large
contribution to the broadening. Additional differences
between the phonon-induced broadenings for the conduc-
tion and valence subbands originate from the different
intersubband spacings as a function of number of lay-
ers (Figs. 5, 11), and different dispersions (Figs. 4, 10).
As in the valence subbands case, the phonon broadening
is most significant for MoSe2 due to stronger electron-
phonon coupling.
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FIG. 14. Optical absorption lines for N = 2 − 5 lay-
ers of lightly n–doped MoS2,MoSe2,WS2, and WSe2, tak-
ing into account intrinsic broadening at room temperature
(T = 300 K). In the case of odd N , lines corresponding to
different subband spin projections are summed.

The absorption spectra of n-doped TMD films calcu-
lated using Fermi’s golden rule, as in Eq. (17), and taking
the discussions of IV A, IV B and IV C into account, are
shown in Fig. 14 for N = 2 to 5 layers. The predicted ab-
sorption spectra for the four TMDs are seen to be more
symmetric than those for the holes, primarily due to the
effect of different dispersions in consecutive subbands,
here aggravated by the shifts κτ,sn|N and the BZ position

of the subbands minima, in addition to the difference be-
tween the in-plane subband effective masses. The large
SO splitting between the middle two subbands for N = 3
results in two distinct lines, whereas for N = 5 the spin-
polarized subbands are nearly degenerate, resulting in
the overlap of the two lines and giving a combined line
with twice the amplitude.

V. CONCLUSIONS

We have presented hybrid k·p-tight binding models
for the conduction and valence band edges of multilayer
TMDs, capable of reproducing the rich low–energy sub-
band dispersions, and allowing us to describe the inter-
subband optical transitions when coupled to out-of-plane
polarized light. In particular, we find that:

• The subbands at the CB edge are found near the
Q-valleys of the Brillouin zone, whereas the valence
band edge is found at the Γ-point. The main dif-
ferences between the two sets of subbands is due
to the significant spin-orbit splitting, multi-valley
structure, and anisotropic dispersions of the con-
duction subbands, by contrast to the valence sub-
bands. These differences manifest themselves in
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the absorption line shapes and additional selection
rules, particularly for odd number of layers, where
spin-orbit splitting is present.

• The four studied TMDs were found to have main
intersubband transition energies for the conduc-
tion and valence subbands, which densely cover the
spectrum range of wavelengths from λ = 2 µm to
30 µm (~ω = 40 meV to 700 meV), for N = 2 to 7
layers. This allows tailoring structures of a specific
material, appropriate type of doping, and number
of layers for a particular device application, from
IR to the THz range.

• Two contributions to the absorption line shape
broadening are identified. The first, broadening
due to intersubband phonon relaxation is found to
produce a meV limit to the intersubband linewidth.
This is in contrast to III-V quantum wells, where
phonon broadening is found to be more damaging
to the intersubband transition line quality factor.29

A second, elastic contribution to the line broaden-
ing caused by the different 2D masses of carriers in
consecutive subbands yields a thermal broadening
of the order of kBT . Similarly to inhomogeneous
broadening, this effect can be reduced by coupling
the transition in the film to a standing wave of light
in a high-Q resonator.

Finally, we propose a specific design of van der Waals
multilayer structure utilizing the intersubband transi-
tions in atomically-thin films of TMDs. The sketch in
Fig. 15 depicts the band configuration of a few-layer
transition metal dichalcogenide film, encapsulated by
hexagonal boron nitride (hBN) and placed between two
graphene electrodes. Applying a bias (and possibly also
gate) voltage between the two electrodes results in a
shift of the Dirac points relative to each other, and al-
lows for the alignment of the Dirac point of the “top”
graphene electrode with the lower energy subband in the
TMD, while keeping the Fermi level in graphene above
the higher-energy subband. The carriers can then tun-
nel from the graphene electrode into the higher-energy
subband. Once in the excited subband state, the carrier
can undergo an intersubband transition, emitting light
polarized in the out-of-plane direction, followed by tun-
neling to the second graphene electrode from the bottom
subband state.

A potentially more favourable realization of the above
process which avoids carrier loss directly from the sec-
ond subband, or carrier tunnelling into the bottom sub-
band, involves using ABC-stacked few-layer graphene.
The band structure of ABC few-layer graphene has a Van
Hove singularity in its density of states at the edge be-
tween conduction and valence bands. Aligning the Van
Hove singularities of two such electrodes with the sec-
ond and first subbands, respectively, would enable one
to achieve preferential injection and extraction of carri-
ers into/from the TMD film, thus offering a new way to
produce functional optical fibre cables.
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FIG. 15. proposed device application for intersubband tran-
sitions in few layer TMDs. (a) Few layer TMDs encapsulated
between two hexagonal Boron Nitride (hBN) crystals and two
graphene (G) electrodes with an applied bias voltage between
them. The applied bias voltage allows to realize light emis-
sion through intersubband transitions in the few layer TMD
system, by carriers tunnelling between the two graphene elec-
trodes. (b) An alternative realization using few-layer ABC
stacked graphene instead of monolayer, utilizing the Van Hove
singularity in the density of states. The bias voltage aligns
the Van Hove singularities near the second and first subbands,
making the desired emission process more favourable,

The proposed “LEGO”-type design of IR/THz emit-
ting materials has potential for implementation as part
of a composite optical fibre, where the coupling to the
out-of-plane polarized photon would be supported by the
wave-guide mode.
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Appendix A: Symmetry constraints for the bilayer
Hamiltonians

For N = 2 (bilayer), the Hamiltonian must be invari-
ant under spatial inversion P, x→ −x mirror symmetry
D(σv), and time reversal T . For the conduction–band
model about the Q point, this gives the conditions46

PHτ
2 (k)P−1 = H−τ2 (−k) (A1a)

D(σv)H
τ
2 (kx, ky)D−1(σv) = H−τ2 (−kx, ky) (A1b)

T Hτ
2 (k)T −1 = H−τ2 (−k). (A1c)

We have P = π1s0, D(σv) = π0s1 and T2 = −iπ0s2C,
where πj (sj) are Pauli matrices acting on the layer (spin)
subspace, and C represents complex conjugation. As a re-
sult, the most general valley-spin structure for the bilayer
Hamiltonian at the τQ valley is

δτ (k) =
3∑

i,j=0

Aτij(k)πisj , (A2)

where the symmetry constraints (A1a)-(A1c) require that

Aτi0(kx, ky) = A−τi0 (−kx, ky) = Aτi0(kx,−ky), i = 0, 1,
(A3a)

Aτ20(kx, ky) = A−τ20 (−kx, ky) = −Aτ20(kx,−ky), (A3b)

Aτ31(kx, ky) = A−τ31 (−kx, ky) = −Aτ31(kx,−ky), (A3c)

Aτ32(kx, ky) = −A−τ32 (−kx, ky) = Aτ32(kx,−ky), (A3d)

Aτ33(kx, ky) = −A−τ33 (−kx, ky) = Aτ33(kx,−ky). (A3e)

One can check that for N = 2, Eq. (19) corresponds

to Aτ00(k) =
E+

↑ (k)+E+
↓ (k)

2 , Aτ33(k) = τ
E+

↑ (k)−E+
↓ (k)

2 ,

Aτ10(k) = t0 + τt1kx + t2k
2
x + u2k

2
y and Aτ20(k) = −u1ky,

and that these terms meet the symmetry requirements.
Furthermore, we carried out fittings to DFT data us-
ing the additional spin–orbit terms Aτ32(k) = αkx and
Aτ31(k) = βky. The fittings give |α|, |β|, |u1| � |t1|;
hence, we conclude that these terms can be neglected.

For the interlayer hopping used in the HkpTB model
for the valence band near Γ, setting N = 2 in Eq. (3)
and using a basis ordering similar to that of Eq. (4), we
have T = π0σ0C, P = π1σ3 and D(σv) = π0σ0, where
σi act on the band (v and w) subspace. The symmetry
conditions require

Re tσ(k) = Re tσ(−k) = Re tσ(−kx, ky), (A4a)

Im tσ(k) = −Im tσ(−k) = Im tσ(−kx, ky), (A4b)

tvw(k) = tvw(−k) = tvw(−kx, ky), tvw ∈ R. (A4c)

Appendix B: Spin–orbit-coupling induced interband
coupling at the Γ-point valence bands

Here, we analyse the role of spin-orbit coupling and
coupling to distant bands in determining parameters for
the valence-band HkpTB model.

The spin-orbit coupling is given by ĤSO = λL̂·Ŝ, where
L̂ and Ŝ are the orbital and spin angular momentum
operators. This can also be written in terms of the ladder
operators L± = Lx ± iLy and S± = (Sx ± iSy)/2 as

ĤSO = λ(LzSz + L+S− + L−S+), (B1)

whereL±S∓ describe a spin flip with corresponding
change in orbital angular momentum projection. These
terms couple the v and w bands with the bands v1 and v3

(Fig. 2d), which in the absence of SO coupling are doubly
degenerate. Band v1 (E′′ Irrep of C3d) has basis functions
which are odd under z → −z (metal d±1 orbitals being
the dominant component26, as well as chalcogen p±1).
Band v3 (E′ Irrep of C3d) has basis functions even under
z → −z (metal d±2 orbitals and chalcogen p±1). Includ-
ing SO coupling results in the splitting of these bands
into new bands denoted by the orbital and spin angu-
lar momentum projections along ẑ, v1(±3/2), v3(±3/2),
and v1(±1/2), v3(±1/2), corresponding to total angular
momentum projections of Jz = ±3/2 and Jz = ±1/2,
respectively.

The v–band belongs to the one–dimensional A′1 Irrep
(even under z → −z, with metal d0 dominant and chalco-
gen p0), and has Lz = 0 and sz = ±1/2. Similarly, the
w–band belongs to the one–dimensional A′′2 Irrep, and
is dominated by the odd (under z → −z) chalcogen p0

orbitals, giving two states with Lz = 0 and sz = ±1/2.
Therefore, in the bilayer, where z → −z symmetry is

broken, the v and w–bands can couple to v1 and v3 bands,
with the appropriate spin–flip terms. In the second–order
perturbation theory, this coupling produces corrections
to the on–site energy

δσ =
∑

Lz,sz
i=1,3
σ=v,w

|〈vi(Lz, sz)|λL±S∓|σ(Lz = 0, sz = ±1/2)〉|2
Eσ − Evi(Lz,sz)

.

(B2)
Note that these corrections are the same for both spin
components of the v or w bands, with only one of the
terms L±S∓ contributing for a given spin state.

An additional SO induced interband coupling with a
spin–flip may be present in the multilayer case, affecting
the interlayer coupling

Ĥ ′SO = µẑ · (k× S) = iµ(S−k+ − S+k−), (B3)

where the pre–factor µ is related to the gradient of the
interlayer pseudo–potential µ ∝ ∂zV , and we defined
k± = kx ± iky. In contrast to the previous coupling,
this coupling has a k–dependence, which affects the dis-
persions. The coupling in Eq. (B3) is odd under spatial
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inversion. Due to the 2H–stacked bilayer having spatial
inversion symmetry, the coupling is non–zero only be-
tween different bands in the two layers. In second order
perturbation theory, we get a nominal redefinition of the
2D mass used in the HkpTB model, by adding the term

µσ(k) =
∑

vi
σ=v,w

|〈vi|µS∓k±|σ〉|2
Eσ − Evi

= µσk
2, (B4)

with µσ a fitting parameter.

Appendix C: Spin–split bands at the Brillouin zone
edge for odd number of layers

The effectiveQ–point HamiltoniansHτ
NQ(k) forN odd

can be split into two decoupled blocks of different spin

projection as Hτ
NQ(k) = diag{hτ,↑N (k), hτ,↓N (k)}, where

the blocks have the alternating N ×N matrix form

hτ,sN (k) =




ε0(k) + sτ∆(k) tτ (k) 0 0 · · · 0
t∗τ (k) ε0(k)− sτ∆(k) t∗τ (k) 0 · · · 0

0 tτ (k) ε0(k) + sτ∆(k) tτ (k) · · · 0
0 0 t∗τ (k) ε0(k)− sτ∆(k) · · · 0
...

...
...

...
. . . tτ (k)

0 0 0 · · · t∗τ (k) ε0(k) + sτ∆(k)



, (C1)

and we have defined

ε0(k) =
E+

↑ (k)+E+
↓ (k)

2 , (C2a)

∆(k) =
E+

↑ (k)−E+
↓ (k)

2 . (C2b)

Defining the even-dimensional (N − 1)× (N − 1) matrix

h̃τ,sN−1(k) =




ε0(k)− sτ∆(k) t∗τ (k) 0 · · · 0
tτ (k) ε0(k) + sτ∆(k) tτ (k) · · · 0

0 t∗τ (k) ε0(k)− sτ∆(k) · · · 0
...

...
...

. . . tτ (k)
0 0 · · · t∗τ (k) ε0(k) + sτ∆(k)



, (C3)

the eigenvalues ε of (C1) are given by a secular equation

det {ε− hτ,sN } = [ε− ε0(k)− sτ∆(k)] det {ε− h̃τ,sN−1}
− |tτ (k)|2 det {ε− hτ,sN−2}

= [ε− ε0(k)− sτ∆(k)] det {ε− h̃τ,sN−1}
− |tτ (k)|2

(
[ε− ε0(k)− sτ∆(k)] det {ε− h̃τ,sN−3}

− |tτ (k)|2 det {ε− hτ,sN−4}
)

= · · ·
(C4)

Using the fact that det {ε− hτ,s1 } = ε− ε0(k)− sτ∆(k),
we can continue expanding Eq. (C4) to obtain

det {ε− hτ,sN } = [ε− ε0(k)− sτ∆(k)]

×
( N−3

2∑

m=0

(−1)m |tτ (k)|2m det {ε− h̃N−(2m+1)}

+ (−1)
N−1

2 |tτ (k)|N−1

)
,

(C5)

which explicitly shows that [ε − ε0(k) − sτ∆(k)] is an
overall factor, and thus ε = ε0(k) + sτ∆(k) ≡ ετs (k) is
always an eigenvalue, regardless of the (odd) value of N .
For a given τ , the different s quantum numbers give two
spin–split monolayer dispersions ετs (k) about the τCm3 Q
(m = 0, 1, 2) points, corresponding to the features ob-
served in Fig. 10. The fact that this prediction is verified
in the DFT band structures clearly confirms the validity
of our hybrid model.

For large odd N , nearly spin–degenerate bands grow
denser on either side of the spin–split bands ετs (k) with-
out crossing them, as shown in Fig. 16a. The reason for
this becomes clear when we take the bulk limit, and find
that the spin–split states form the band edges around a
central gap in the subband structure. This is shown in
Fig. 16b. Indeed, in the limit of large N the Hamiltonian
(C1) corresponds to the bulk Hamiltonian at kz = π/c,
since ε0(k) = ε0(k, kz = π

c ) [see Eq. (21)].
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FIG. 16. (a) Subband structure of 101-layer WS2 near τQ
(kx = 0), along the ΓK line. Spin up (down) bands are
shown with solid (dashed) curves. The spin–split bands ετs (k),
pinned in the middle of the odd N subband structure, are
shown in blue and red. (b) Bulk band structure for WS2

along the QA line. Blue and red dots mark the position of
the spin–split bands in the Brillouin zone.

Appendix D: Electron-phonon coupling for LO
phonon in multilayer system

In this appendix we derive the expression used for the
electorn-phonon coupling with LO phonon in a multilayer
system. As described in the text, we treat the LO phonon
in each layer as independent and degenerate. However, in
the LO phonon case, the generated electrostatic potential
due LO phonon in one layer interacts with the electrons
in all the other layers in the system. Following similar
steps as in ref. [47].

Within a monolayer, the LO phonon induced in-plane
polarization is given by its in-plane Fourier component,

Pq(z) =
eZ

ε(q)A
uqδ(z), (D1)

where Z is the Born effective charge on the metal and

chalcogens, A is the unit cell area, uq =
√

~
2MrNcellωLO

ê

is the phonon–induced atomic displacement in the di-
rection connecting the metal and chalcogens in the unit
cell, with Mr the reduced mass of the metal and chalco-
gens, N the number of unit cells in the sample, and ωLO

the LO phonon frequency. ε(q) is the dielectric function
characterizing the response of the material to the phonon
induced electric field.

The induced charge density in the layer is given by
ρ = −∇ ·P, with the Fourier component

ρq = −iq · Pq. (D2)

The potential resulting from the charge distribution
is given by Poisson’s equation ∇2φ = −4πρ. Fourier–
transforming in three dimensions gives,

φq(k) =
−4πieZ

ε(q)A

q · uq

q2 + k2
, (D3)

where k is the Fourier parameter in the z direction. In-
verse Fourier transforming in k gives the z dependence
of the potential with in-plane Fourier component q

φq(z) = −i2πeZuq
ε(q)A

e−q|z|. (D4)

The electron-phonon coupling for an electron localized
in an isolated monolayer is given by g(q) = eφq(0) =

−i 2πe2Zuq

εA . This form of the coupling is similar to the
form derived in Refs. [40 and 48], where the polarizability
of a two–dimensional dielectric was taken into account
by the replacement ε(q)→ 1 + r∗q, with r∗ the screening
length in the material. For multilayer 2H-stacked TMDs,
as the polarization in subsequent layers alternates in its
sign, the resulting electrostatic potential also alternates
in its sign.

Appendix E: Electron-phonon coupling for ZO
phonon in multilayer system

The atomic vibrations for the ZO optical phonon mode
result in a polarization in the out of plane direction due
to the opposite motions of the metal and two chalcogens,
and the finite Born effective charges in the z-direction.
The interaction energy in the multilayer system between
charges and phonon-induced out of plane polarizations in
all layers is given by49

Eint =
∑

n,m

∫
d2rd2r′

ρn(r)Pz,m(r′)d(n−m)

∆r3
,

∆r = [(r− r′)2 + d2(n−m)2]1/2,

(E1)

where ρn(r) is the charge density on layer n, Pz,m(r′) is
the out of plane polarization in layer m caused by the
ZO optical phonon, d the interlayer separation, and we
sum over all layer pairs. Fourier–transforming the charge
density and polarization in the in-plane momentum com-
ponents gives

ρn(r) =

∫
d2q

(2π)2
eiq·rρm(q), (E2)
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and similarly for the polarization. The interaction energy
then takes the form,

Eint =
∑

n,m

∫
d2rd2r′

d(n−m)

∆r3

×
∫
d2qd2q′

(2π)4
eiq·reiq

′·r′ρn(q)Pz,m(q′).

(E3)

Defining the new variables r̃ = r − r′, R = r + r′ and
integrating over R gives δq,−q′ ,

Ee-ph =
∑

n,m

∫
d2r̃

∫
d2q

(2π)2

d(n−m)

∆r̃3
eiq·r̃

× ρ∗n(q)Pz,m(q),

(E4)

where in the last row we used ρ∗n(q) = ρn(−q), since the
density is real. Carrying out the integration over r̃ gives

Ee-ph =
′∑

n,m

2π(n−m)

|n−m|

∫
d2q

(2π)2
e−qd|n−m|ρ∗n(q)Pz,m(q),

(E5)
where the ′ over the sum means that the summation ex-
cludes the term with n = m. Quantizing the phonon
polarization and the carrier density gives

ρ∗n(q) = e
∑

k

c†k,nck+q,n,

Pz,m(q) =
eZz
A

√
~

2NcellMrω
(a−q,m + a†q,m),

(E6)

where ck,n(c†k,n) is the annihilation (creation) operator

for an electron in state k in layer n, and aq,m(a†q,m) is
the annihilation (creation) operator for a phonon with in-
plane wave vector q. The phonon–induced polarization
is given, similarly to the LO phonon case, by the Born
effective charge and the phonon displacement.

The electron-phonon interaction Hamiltonian is then

given by

He-ph =
2πe2Zz
A

√
~

2NcellMrωZO

′∑

n,m

∑

k,q

n−m
|n−m|e

−qd|n−m|

× c†k,nck+q,n(a−q,m + a†q,m).

(E7)

Appendix F: DFT-calculated band structures for
few-layer TMDs

In Figs. 17-20 we show the DFT band structures
for the four TMDs, which were used for the model
parametrization. The DFT calculations were per-
formed using a plane–wave basis within the local den-
sity approximation (LDA), with the Quantum Espresso31

PWSCF ab initio package. We considered the Perdew–
Zunger exchange correlation scheme32, with fully–
relativistic norm–conserving pseudo–potentials, includ-
ing non–collinear corrections. Pseudopotentials for Mo,
W, S, and Se atoms were generated using atomic code
ld1.x of the PWSCF package33. The cutoff energy in
the plane–wave expansion was set to 60 Ry, and the
BZ sampling of electronic states was approximated us-
ing a Monkhorst–Pack uniform k–grid of 24 × 24 × 1
for all structures.34 We adopted a Methfessel-Paxton
smearing35 of 0.005 Ry and set the total energy conver-
gence to less than 10−6 eV in all calculations. Spin–
orbit coupling was included in all electronic band struc-
ture calculations. To eliminate spurious interactions be-
tween adjacent supercells, a 20 Å vacuum buffer space
was inserted in the out-of-plane direction. The inter-
layer separations in the four TMDs were taken to be the
experimental values, 6.149 Å36, 6.463 Å37, 6.173 Å38,
and 6.477 Å39, with LDA-optimised in–plane lattice con-
stants of 3.157 Å, 3.288 Å, 3.161 Å, and 3.291 Å for
MoS2, MoSe2, WS2, and WSe2, respectively.
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FIG. 17. DFT calculated band structure of N–layer 2H-MoS2, for N = 1 to 6. In the monolayer case we highlight the CB
(blue for spin down, red for spin up), VB (green) and lower valence band w (magenta). Few–layer MoS2 band structures have
been presented in Refs. 14, 16–19.
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FIG. 18. DFT calculated band structure of N–layer 2H-MoSe2, for N = 1 to 6. Few–layer MoSe2 band structures have been
presented in Refs. 16, 18, 20, and 21.

14 T. Cheiwchanchamnangij and W. R. L. Lambrecht, Phys.
Rev. B 85, 205302 (2012).

15 E. Cappelluti, R. Roldán, J. A. Silva-Guillén, P. Ordejón,
and F. Guinea, Phys. Rev. B 88, 075409 (2013).



22

WS2

E
[e

V
]

E
[e

V
]

N = 1 N = 2 N = 3

N = 4 N = 5 N = 6

FIG. 19. DFT calculated band structure of N–layer 2H-WS2, for N = 1 to 6. Few–layer WS2 band structures have been
presented in Refs. 16 and 18.
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presented in Refs. 16, 18, and 21.
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Chapter 7

Conclusions

The work presented in this thesis aimed at furthering the understanding of processes

affecting and determining the optical properties of two dimensional transition metal

dichalcogenides. In the published works presented we have covered monolayer, het-

erobilayer and multilayer structures, demonstrating the versatility, limitations and

applicability of these materials for future optoelectronic devices and applications.

Below we provide a summary of the main results obtained and an outlook on

possible future work.

In Chapter 3 we studied the kinetics of processes involving electrons and holes de-

termining the efficiency of light emission in monolayer TMDCs. We have shown that

the electron-phonon coupling with the homopolar and longitudinal optical phonons

in these two dimensional materials results in sub-ps relaxation times of the photo-

excited carriers, which facilitate the fast formation of excitons capable of emitting

light, making these materials favourable for light emitting devices. Additionally, we

have demonstrated how the intrinsically dark excitons forming the ground state bound

complexes in WS2 and WSe2, can recombine radiatively through a phonon assisted pro-

cess, which is ∼ 104 times weaker as compared to the bright exciton’s rate. Comparing

the radiative process to a non-radiative Auger process revealed that it can dominate

over the radiative process for relatively low carrier densities < 1011 cm−2, providing a

possible explanation to the experimentally observed low quantum efficiencies in these

materials, despite their favourable properties for light emission.

The observed low quantum efficiencies for light emission in MoS2,MoSe2 are still
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not clear due to the ground states excitons being bright, and therefore cannot be

explained using the same Auger process proposed for WS2,WSe2, and require an al-

ternative microscopic process involving the bright ground state excitons.

The effect of different dielectric environments encapsulating the monolayer TMDCs

need be further investigated. The presence of the dielectric environment will result

in modification to the electron-phonon coupling due to additional dielectric screening,

however will also allow for electron-phonon coupling with the substrate phonons.

In Chapter 4, we studied the various bound complexes in monolayer TMDCs. We

predicted the appearance of semidark trions and biexcitons in the photoluminescence

spectra of WS2 and WSe2. These complexes were shown to become bright through a

proposed virtual electron-electron intervalley scattering, providing a finite optical ma-

trix element for these complexes, leading to radiative lifetimes an order of magnitude

larger than those of the bright complexes. The semidark trions and biexcitons are pre-

dicted to have associated photon energies, which are shifted with respect to the bright

counterparts by twice the spin-orbit splitting in the conduction band, and should be

most dominant at very low temperatures as compared to the spin-orbit splitting, due

to the bright excitonic complexes in these materials requiring an activation energy.

The behaviour of the various bound complexes under a magnetic field revealed

large deviations in the measured g-factor (measuring difference in emitted photon

energies in the two valleys as a function of magnetic field), which lack a proper expla-

nation. Therefore, further studies may involve the incorporation of a magnetic field

and studying its influence on the bound complexes and the emitted light.

In Chapter 5, we have shown that in twisted and incommensurate MoSe2/WSe2

heterobilayer systems, where the momentum mismatch between the electrons and holes

in the opposite valleys prevents the direct radiative recombination of interlayer com-

plexes, donor bound interlayer complexes (D0h and D0X) have radiative rates of few

∼ µs−1 for closely aligned layers with a donor density of nD ∼ 1013 cm−2, where the

finite optical matrix element is provided by the momentum spread of the localized com-

plexes wave functions. For large misalignment, the screened bilayer potential for the

short range interaction between the carriers and donor results in a strong asymptotic

angular dependence of ∝ θ−8, making these lines observable mainly for closely aligned
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layers. Additional emission lines were found due to LO phonon assisted recombination,

with significant rates in particular for the D0h complex. The predicted photolumi-

nescence spectrum, therefore contains three main distinct lines with the intensity of

the lines depending on the carrier density, which affects the number of relevant donor

bound complexes present in the sample, with the neutral donor and hole complex D0h

and its phonon replica dominating at low carrier density, whereas the donor bound

trion D0X dominating at high carrier density (as compared with the donor density).

This work extends the understanding and interpretation of the spectra of heterobi-

layers of TMDCs for lattice mismatched and weakly misaligned layers, demonstrating

the importance of impurities for the radiative recombination of interlayer complexes.

Future work which generalizes the presented work may include the similar investiga-

tion of acceptor bound complexes, with the acceptors localized on the typically p-doped

Tungsten based layer. Additionally, future work may involve exploring other combi-

nations of materials, with different band alignments, and different stacking, which in

particular modify the tunnelling amplitudes.

For closely aligned layers, an additional perturbation arises due to the moiré poten-

tial, which can have a periodicity larger than the complex’s extent in real space. The

moiré potential will further localize the interlayer complex and modify the observed

photoluminescence spectra.

The electrons and holes, separated by the interlayer distance, result in the forma-

tion of an electric dipole in the out-of-plane direction. Multiple complexes therefore

will have a dipole-dipole interaction, which may affect the observed spectra. The

dipole additionally interacts with the applied electric field from the gates used to elec-

trostatically dope the system, resulting in a Stark shift to the photon energies, which

was not accounted for.

In Chapter 6, we have shown that few-layer transition metal dichalcogenids contain

a rich subband structure both in the valence band for p-doped and in the conduction

band for n-doped few-layer films, with the four studied transition metal dichalco-

genides covering densely the infrared to far–infrared spectral range, thus demonstrat-

ing a yet to be explored potential of these materials in the form of few-layers quantum

wells, opening new research directions in the field of two dimensional transition metal

dichalcogenides. The subband structure in the conduction band shows an alternating
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behaviour in terms of spin-orbit splitting between the subbands, for even and odd

number of layers, reflecting the symmetry properties of the 2H-stacked few-layer films.

The parity (mirror or inversion) symmetry of the few-layer films results in selection

rules for the intersubband transitions due to absorption of out-of-plane polarized light,

with transition between same parity subbands being forbidden. The obtained absorp-

tion lineshapes show a dispersion broadening (∼ kBT ) due to the subband dependent

effective masses. Additional broadening mechanism due to intersubband phonon re-

laxation was found to give a contribution of few meV, which is weaker as compared

to conventional semiconductors quantum wells. Few-layer transition metal dichalco-

genides therefore provide a promising platform for optoelectronic devices operating in

the infrared to far–infrared spectral range.

Future work for the utilisation of intersubband transitions requires the modelling of

the effects of electrostatic gating and screening in the few-layer films on the subbands

and their optical properties.

Finally, the multi-degenerate, spin-orbit split, and anisotropic Q-valleys in the

conduction band of few-layer films of TMDCs make them a promising platform for

quantum Hall ferromagnetism studies.



Appendix A

Electron-phonon coupling of

homopolar and longitudinal optical

phonons in 2D TMDCs

In this appendix we provide a more detailed derivation for the electron-phonon coupling

with the longitudinal optical phonon in 2D TMDCs, used in Chapters 3 (Ref. [21])

and 6.

The HP phonon mode transforms according to the identity irrep A′1 of the D3h

point group, such that the coupling can be described by the zeroth order deformation

potential D as

δVHP = DuHP . (A.1)

Quantizing the lattice displacement as

uHP,q =

√
~

2NMωHP
(a†−q + aq), (A.2)

where N is the number of unit cells, M is the unit cell mass, ωHP is the phonon

frequency, and a
(†)
q is the annihilation(creation) of a phonon with wave vector q, we

get for the electron-phonon coupling

gHP =

√
~

2NMωHP
D. (A.3)

In the LO phonon case, the lattice induced displacements of the ions in the unit cell

results in a polarization, which results in an electrostatic potential which the electrons

interact with [42]. To obtain the coupling of electrons with the polar LO phonons
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at long wavelengths, we consider the electrostatic energy of a monolayer given in the

continuum limit by [48],

Eint =
1

2

∫
d2rd2r′

|r− r′|σ(r)σ(r′) +
1

2κ

∫
d2rP 2

⊥;

σ(r) = eρ(r)−∇ ·Pop −∇ ·P⊥,
(A.4)

where ρ(r) is the 2D electron density, Pop is the polarization induced by the optical

phonon, P⊥ is the remaining in-plane polarization component, and κ is the in-plane

polarizability or rigidity. Fourier transforming Eq. A.4, and integrating out the in-

plane polarization P⊥ by minimizing the energy with respect to it, thus using an

adiabatic approximation for the in-plane polarization, giving

Eint =
1

2

∫
d2q

(2π)2

2π(q ·Pop,q − ieρq)(q ·P∗op,q + ieρ∗q)

q(1 + qr∗)
, (A.5)

where we defined the screening length r∗ ≡ 2πκ in terms of the in-plane polarizability.

The denominator term ε(q) = 1 + qr∗, plays the role of a momentum dependent

dielectric function, which is characteristic of Coulomb interaction in 2D materials [19].

From Eq. (A.5) we can read out the contribution to the electrostatic energy coming

from the electron-phonon interaction from the terms containing the phonon induced

polarization Pop,q and the electron density ρq,

He−ph =

∫
d2q

(2π)2

2πieq ·Pop,qρ
∗
q

q(1 + qr∗)
, (A.6)

where ρq, Pop,q are the Fourier components of the carrier density and polarization. The

LO phonon induced polarization is given by the dipole moment per unit area,

Pop =
Ze

A
u(r), (A.7)

where A is the unit cell area, u(r) is the relative displacement of the ions, and Z

is the Born effective charge of the displaced ions (opposite charge on the metal and

two chalcogens). Quantizing the lattice vibrations, the phonon induced displacement

Fourier component is given by

uq =

√
~

2NMrωLO
êq(a†−q + aq), (A.8)

where N is a normalization factor equal to the number of unit cells in the sample, ωLO

is the LO phonon frequency, Mr is the reduced mass of the metal and two chalcogen
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atoms, and ê is a unit vector in the direction of relative displacement of the ions. The

charge density is given in second quantized form by

ρ∗q =
∑

k

c†k+qck. (A.9)

Finally, combining Eqs. (A.7, A.8, A.9) into Eq. (A.6), and converting the integration

into summation we get,

He−ph =
∑

k,q

2πie2Z

A(1 + qr∗)

√
~

2NMrωLO
c†k+qck(a†−q + aq). (A.10)

The LO phonon coupling is then given as

gLO,q =
2πie2Z

A(1 + qr∗)

√
~

2NMrωLO
. (A.11)

Figure A.1: Phonon coupling for the LO (solid) and HP (dashed) phonon modes as a
function of the phonon wave vector q for the four TMDCs materials studied.
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